Metamath Proof Explorer


Theorem fsum2mul

Description: Separate the nested sum of the product C ( j ) x. D ( k ) . (Contributed by NM, 13-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsum2mul.1 φ A Fin
fsum2mul.2 φ B Fin
fsum2mul.3 φ j A C
fsum2mul.4 φ k B D
Assertion fsum2mul φ j A k B C D = j A C k B D

Proof

Step Hyp Ref Expression
1 fsum2mul.1 φ A Fin
2 fsum2mul.2 φ B Fin
3 fsum2mul.3 φ j A C
4 fsum2mul.4 φ k B D
5 2 4 fsumcl φ k B D
6 1 5 3 fsummulc1 φ j A C k B D = j A C k B D
7 2 adantr φ j A B Fin
8 4 adantlr φ j A k B D
9 7 3 8 fsummulc2 φ j A C k B D = k B C D
10 9 sumeq2dv φ j A C k B D = j A k B C D
11 6 10 eqtr2d φ j A k B C D = j A C k B D