Step |
Hyp |
Ref |
Expression |
1 |
|
fsumabs.1 |
|
2 |
|
fsumabs.2 |
|
3 |
|
ssid |
|
4 |
|
sseq1 |
|
5 |
|
sumeq1 |
|
6 |
5
|
fveq2d |
|
7 |
|
sumeq1 |
|
8 |
6 7
|
breq12d |
|
9 |
4 8
|
imbi12d |
|
10 |
9
|
imbi2d |
|
11 |
|
sseq1 |
|
12 |
|
sumeq1 |
|
13 |
12
|
fveq2d |
|
14 |
|
sumeq1 |
|
15 |
13 14
|
breq12d |
|
16 |
11 15
|
imbi12d |
|
17 |
16
|
imbi2d |
|
18 |
|
sseq1 |
|
19 |
|
sumeq1 |
|
20 |
19
|
fveq2d |
|
21 |
|
sumeq1 |
|
22 |
20 21
|
breq12d |
|
23 |
18 22
|
imbi12d |
|
24 |
23
|
imbi2d |
|
25 |
|
sseq1 |
|
26 |
|
sumeq1 |
|
27 |
26
|
fveq2d |
|
28 |
|
sumeq1 |
|
29 |
27 28
|
breq12d |
|
30 |
25 29
|
imbi12d |
|
31 |
30
|
imbi2d |
|
32 |
|
0le0 |
|
33 |
|
sum0 |
|
34 |
33
|
fveq2i |
|
35 |
|
abs0 |
|
36 |
34 35
|
eqtri |
|
37 |
|
sum0 |
|
38 |
32 36 37
|
3brtr4i |
|
39 |
38
|
2a1i |
|
40 |
|
ssun1 |
|
41 |
|
sstr |
|
42 |
40 41
|
mpan |
|
43 |
42
|
imim1i |
|
44 |
|
simpll |
|
45 |
44 1
|
syl |
|
46 |
|
simpr |
|
47 |
46
|
unssad |
|
48 |
45 47
|
ssfid |
|
49 |
47
|
sselda |
|
50 |
44 49 2
|
syl2an2r |
|
51 |
48 50
|
fsumcl |
|
52 |
51
|
abscld |
|
53 |
50
|
abscld |
|
54 |
48 53
|
fsumrecl |
|
55 |
46
|
unssbd |
|
56 |
|
vex |
|
57 |
56
|
snss |
|
58 |
55 57
|
sylibr |
|
59 |
2
|
ralrimiva |
|
60 |
44 59
|
syl |
|
61 |
|
nfcsb1v |
|
62 |
61
|
nfel1 |
|
63 |
|
csbeq1a |
|
64 |
63
|
eleq1d |
|
65 |
62 64
|
rspc |
|
66 |
58 60 65
|
sylc |
|
67 |
66
|
abscld |
|
68 |
52 54 67
|
leadd1d |
|
69 |
|
simplr |
|
70 |
|
disjsn |
|
71 |
69 70
|
sylibr |
|
72 |
|
eqidd |
|
73 |
45 46
|
ssfid |
|
74 |
46
|
sselda |
|
75 |
44 74 2
|
syl2an2r |
|
76 |
75
|
abscld |
|
77 |
76
|
recnd |
|
78 |
71 72 73 77
|
fsumsplit |
|
79 |
|
csbfv2g |
|
80 |
79
|
elv |
|
81 |
67
|
recnd |
|
82 |
80 81
|
eqeltrid |
|
83 |
|
sumsns |
|
84 |
56 82 83
|
sylancr |
|
85 |
84 80
|
eqtrdi |
|
86 |
85
|
oveq2d |
|
87 |
78 86
|
eqtrd |
|
88 |
87
|
breq2d |
|
89 |
68 88
|
bitr4d |
|
90 |
71 72 73 75
|
fsumsplit |
|
91 |
|
sumsns |
|
92 |
58 66 91
|
syl2anc |
|
93 |
92
|
oveq2d |
|
94 |
90 93
|
eqtrd |
|
95 |
94
|
fveq2d |
|
96 |
51 66
|
abstrid |
|
97 |
95 96
|
eqbrtrd |
|
98 |
73 75
|
fsumcl |
|
99 |
98
|
abscld |
|
100 |
52 67
|
readdcld |
|
101 |
73 76
|
fsumrecl |
|
102 |
|
letr |
|
103 |
99 100 101 102
|
syl3anc |
|
104 |
97 103
|
mpand |
|
105 |
89 104
|
sylbid |
|
106 |
105
|
ex |
|
107 |
106
|
a2d |
|
108 |
43 107
|
syl5 |
|
109 |
108
|
expcom |
|
110 |
109
|
a2d |
|
111 |
110
|
adantl |
|
112 |
10 17 24 31 39 111
|
findcard2s |
|
113 |
1 112
|
mpcom |
|
114 |
3 113
|
mpi |
|