Step |
Hyp |
Ref |
Expression |
1 |
|
fsumadd.1 |
|
2 |
|
fsumadd.2 |
|
3 |
|
fsumadd.3 |
|
4 |
|
00id |
|
5 |
|
sum0 |
|
6 |
|
sum0 |
|
7 |
5 6
|
oveq12i |
|
8 |
|
sum0 |
|
9 |
4 7 8
|
3eqtr4ri |
|
10 |
|
sumeq1 |
|
11 |
|
sumeq1 |
|
12 |
|
sumeq1 |
|
13 |
11 12
|
oveq12d |
|
14 |
9 10 13
|
3eqtr4a |
|
15 |
14
|
a1i |
|
16 |
|
simprl |
|
17 |
|
nnuz |
|
18 |
16 17
|
eleqtrdi |
|
19 |
2
|
adantlr |
|
20 |
19
|
fmpttd |
|
21 |
|
simprr |
|
22 |
|
f1of |
|
23 |
21 22
|
syl |
|
24 |
|
fco |
|
25 |
20 23 24
|
syl2anc |
|
26 |
25
|
ffvelrnda |
|
27 |
3
|
adantlr |
|
28 |
27
|
fmpttd |
|
29 |
|
fco |
|
30 |
28 23 29
|
syl2anc |
|
31 |
30
|
ffvelrnda |
|
32 |
23
|
ffvelrnda |
|
33 |
|
ovex |
|
34 |
|
eqid |
|
35 |
34
|
fvmpt2 |
|
36 |
33 35
|
mpan2 |
|
37 |
36
|
adantl |
|
38 |
|
simpr |
|
39 |
|
eqid |
|
40 |
39
|
fvmpt2 |
|
41 |
38 2 40
|
syl2anc |
|
42 |
|
eqid |
|
43 |
42
|
fvmpt2 |
|
44 |
38 3 43
|
syl2anc |
|
45 |
41 44
|
oveq12d |
|
46 |
37 45
|
eqtr4d |
|
47 |
46
|
ralrimiva |
|
48 |
47
|
ad2antrr |
|
49 |
|
nffvmpt1 |
|
50 |
|
nffvmpt1 |
|
51 |
|
nfcv |
|
52 |
|
nffvmpt1 |
|
53 |
50 51 52
|
nfov |
|
54 |
49 53
|
nfeq |
|
55 |
|
fveq2 |
|
56 |
|
fveq2 |
|
57 |
|
fveq2 |
|
58 |
56 57
|
oveq12d |
|
59 |
55 58
|
eqeq12d |
|
60 |
54 59
|
rspc |
|
61 |
32 48 60
|
sylc |
|
62 |
|
fvco3 |
|
63 |
23 62
|
sylan |
|
64 |
|
fvco3 |
|
65 |
23 64
|
sylan |
|
66 |
|
fvco3 |
|
67 |
23 66
|
sylan |
|
68 |
65 67
|
oveq12d |
|
69 |
61 63 68
|
3eqtr4d |
|
70 |
18 26 31 69
|
seradd |
|
71 |
|
fveq2 |
|
72 |
19 27
|
addcld |
|
73 |
72
|
fmpttd |
|
74 |
73
|
ffvelrnda |
|
75 |
71 16 21 74 63
|
fsum |
|
76 |
|
fveq2 |
|
77 |
20
|
ffvelrnda |
|
78 |
76 16 21 77 65
|
fsum |
|
79 |
|
fveq2 |
|
80 |
28
|
ffvelrnda |
|
81 |
79 16 21 80 67
|
fsum |
|
82 |
78 81
|
oveq12d |
|
83 |
70 75 82
|
3eqtr4d |
|
84 |
|
sumfc |
|
85 |
|
sumfc |
|
86 |
|
sumfc |
|
87 |
85 86
|
oveq12i |
|
88 |
83 84 87
|
3eqtr3g |
|
89 |
88
|
expr |
|
90 |
89
|
exlimdv |
|
91 |
90
|
expimpd |
|
92 |
|
fz1f1o |
|
93 |
1 92
|
syl |
|
94 |
15 91 93
|
mpjaod |
|