Metamath Proof Explorer


Theorem fsumclf

Description: Closure of a finite sum of complex numbers A ( k ) . A version of fsumcl using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsumclf.ph k φ
fsumclf.a φ A Fin
fsumclf.b φ k A B
Assertion fsumclf φ k A B

Proof

Step Hyp Ref Expression
1 fsumclf.ph k φ
2 fsumclf.a φ A Fin
3 fsumclf.b φ k A B
4 csbeq1a k = j B = j / k B
5 nfcv _ j B
6 nfcsb1v _ k j / k B
7 4 5 6 cbvsum k A B = j A j / k B
8 7 a1i φ k A B = j A j / k B
9 nfv k j A
10 1 9 nfan k φ j A
11 6 nfel1 k j / k B
12 10 11 nfim k φ j A j / k B
13 eleq1w k = j k A j A
14 13 anbi2d k = j φ k A φ j A
15 4 eleq1d k = j B j / k B
16 14 15 imbi12d k = j φ k A B φ j A j / k B
17 12 16 3 chvarfv φ j A j / k B
18 2 17 fsumcl φ j A j / k B
19 8 18 eqeltrd φ k A B