Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcllem.1 |
|
2 |
|
fsumcllem.2 |
|
3 |
|
fsumcllem.3 |
|
4 |
|
fsumcllem.4 |
|
5 |
|
fsumcllem.5 |
|
6 |
|
simpr |
|
7 |
6
|
sumeq1d |
|
8 |
|
sum0 |
|
9 |
7 8
|
eqtrdi |
|
10 |
5
|
adantr |
|
11 |
9 10
|
eqeltrd |
|
12 |
1
|
adantr |
|
13 |
2
|
adantlr |
|
14 |
3
|
adantr |
|
15 |
4
|
adantlr |
|
16 |
|
simpr |
|
17 |
12 13 14 15 16
|
fsumcl2lem |
|
18 |
11 17
|
pm2.61dane |
|