| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumcn.3 |
|
| 2 |
|
fsumcn.4 |
|
| 3 |
|
fsumcn.5 |
|
| 4 |
|
fsumcn.6 |
|
| 5 |
|
ssid |
|
| 6 |
|
sseq1 |
|
| 7 |
|
sumeq1 |
|
| 8 |
7
|
mpteq2dv |
|
| 9 |
8
|
eleq1d |
|
| 10 |
6 9
|
imbi12d |
|
| 11 |
10
|
imbi2d |
|
| 12 |
|
sseq1 |
|
| 13 |
|
sumeq1 |
|
| 14 |
13
|
mpteq2dv |
|
| 15 |
14
|
eleq1d |
|
| 16 |
12 15
|
imbi12d |
|
| 17 |
16
|
imbi2d |
|
| 18 |
|
sseq1 |
|
| 19 |
|
sumeq1 |
|
| 20 |
19
|
mpteq2dv |
|
| 21 |
20
|
eleq1d |
|
| 22 |
18 21
|
imbi12d |
|
| 23 |
22
|
imbi2d |
|
| 24 |
|
sseq1 |
|
| 25 |
|
sumeq1 |
|
| 26 |
25
|
mpteq2dv |
|
| 27 |
26
|
eleq1d |
|
| 28 |
24 27
|
imbi12d |
|
| 29 |
28
|
imbi2d |
|
| 30 |
|
sum0 |
|
| 31 |
30
|
mpteq2i |
|
| 32 |
1
|
cnfldtopon |
|
| 33 |
32
|
a1i |
|
| 34 |
|
0cnd |
|
| 35 |
2 33 34
|
cnmptc |
|
| 36 |
31 35
|
eqeltrid |
|
| 37 |
36
|
a1d |
|
| 38 |
|
ssun1 |
|
| 39 |
|
sstr |
|
| 40 |
38 39
|
mpan |
|
| 41 |
40
|
imim1i |
|
| 42 |
|
simplr |
|
| 43 |
|
disjsn |
|
| 44 |
42 43
|
sylibr |
|
| 45 |
|
eqidd |
|
| 46 |
3
|
ad2antrr |
|
| 47 |
|
simprl |
|
| 48 |
46 47
|
ssfid |
|
| 49 |
|
simplll |
|
| 50 |
47
|
sselda |
|
| 51 |
|
simplrr |
|
| 52 |
2
|
adantr |
|
| 53 |
32
|
a1i |
|
| 54 |
|
cnf2 |
|
| 55 |
52 53 4 54
|
syl3anc |
|
| 56 |
|
eqid |
|
| 57 |
56
|
fmpt |
|
| 58 |
55 57
|
sylibr |
|
| 59 |
|
rsp |
|
| 60 |
58 59
|
syl |
|
| 61 |
60
|
imp |
|
| 62 |
49 50 51 61
|
syl21anc |
|
| 63 |
44 45 48 62
|
fsumsplit |
|
| 64 |
|
simpr |
|
| 65 |
64
|
unssbd |
|
| 66 |
|
vex |
|
| 67 |
66
|
snss |
|
| 68 |
65 67
|
sylibr |
|
| 69 |
68
|
adantrr |
|
| 70 |
60
|
impancom |
|
| 71 |
70
|
ralrimiv |
|
| 72 |
71
|
ad2ant2rl |
|
| 73 |
|
nfcsb1v |
|
| 74 |
73
|
nfel1 |
|
| 75 |
|
csbeq1a |
|
| 76 |
75
|
eleq1d |
|
| 77 |
74 76
|
rspc |
|
| 78 |
69 72 77
|
sylc |
|
| 79 |
|
sumsns |
|
| 80 |
69 78 79
|
syl2anc |
|
| 81 |
80
|
oveq2d |
|
| 82 |
63 81
|
eqtrd |
|
| 83 |
82
|
anassrs |
|
| 84 |
83
|
mpteq2dva |
|
| 85 |
84
|
adantrr |
|
| 86 |
|
nfcv |
|
| 87 |
|
nfcv |
|
| 88 |
|
nfcsb1v |
|
| 89 |
87 88
|
nfsum |
|
| 90 |
|
nfcv |
|
| 91 |
|
nfcv |
|
| 92 |
91 88
|
nfcsbw |
|
| 93 |
89 90 92
|
nfov |
|
| 94 |
|
csbeq1a |
|
| 95 |
94
|
sumeq2sdv |
|
| 96 |
94
|
csbeq2dv |
|
| 97 |
95 96
|
oveq12d |
|
| 98 |
86 93 97
|
cbvmpt |
|
| 99 |
85 98
|
eqtrdi |
|
| 100 |
2
|
ad2antrr |
|
| 101 |
|
nfcv |
|
| 102 |
101 89 95
|
cbvmpt |
|
| 103 |
|
simprr |
|
| 104 |
102 103
|
eqeltrrid |
|
| 105 |
|
nfcv |
|
| 106 |
105 92 96
|
cbvmpt |
|
| 107 |
68
|
adantrr |
|
| 108 |
4
|
ralrimiva |
|
| 109 |
108
|
ad2antrr |
|
| 110 |
|
nfcv |
|
| 111 |
110 73
|
nfmpt |
|
| 112 |
111
|
nfel1 |
|
| 113 |
75
|
mpteq2dv |
|
| 114 |
113
|
eleq1d |
|
| 115 |
112 114
|
rspc |
|
| 116 |
107 109 115
|
sylc |
|
| 117 |
106 116
|
eqeltrrid |
|
| 118 |
1
|
addcn |
|
| 119 |
118
|
a1i |
|
| 120 |
100 104 117 119
|
cnmpt12f |
|
| 121 |
99 120
|
eqeltrd |
|
| 122 |
121
|
exp32 |
|
| 123 |
122
|
a2d |
|
| 124 |
41 123
|
syl5 |
|
| 125 |
124
|
expcom |
|
| 126 |
125
|
adantl |
|
| 127 |
126
|
a2d |
|
| 128 |
11 17 23 29 37 127
|
findcard2s |
|
| 129 |
3 128
|
mpcom |
|
| 130 |
5 129
|
mpi |
|