Metamath Proof Explorer


Theorem fsumcnf

Description: A finite sum of functions to complex numbers from a common topological space is continuous, without disjoint var constraint x ph. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fsumcnf.1 K = TopOpen fld
fsumcnf.2 φ J TopOn X
fsumcnf.3 φ A Fin
fsumcnf.4 φ k A x X B J Cn K
Assertion fsumcnf φ x X k A B J Cn K

Proof

Step Hyp Ref Expression
1 fsumcnf.1 K = TopOpen fld
2 fsumcnf.2 φ J TopOn X
3 fsumcnf.3 φ A Fin
4 fsumcnf.4 φ k A x X B J Cn K
5 nfcv _ y k A B
6 nfcv _ x A
7 nfcsb1v _ x y / x B
8 6 7 nfsum _ x k A y / x B
9 csbeq1a x = y B = y / x B
10 9 sumeq2sdv x = y k A B = k A y / x B
11 5 8 10 cbvmpt x X k A B = y X k A y / x B
12 nfcv _ y B
13 12 7 9 cbvmpt x X B = y X y / x B
14 13 4 eqeltrrid φ k A y X y / x B J Cn K
15 1 2 3 14 fsumcn φ y X k A y / x B J Cn K
16 11 15 eqeltrid φ x X k A B J Cn K