Metamath Proof Explorer


Theorem fsumcom

Description: Interchange order of summation. (Contributed by NM, 15-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fsumcom.1 φ A Fin
fsumcom.2 φ B Fin
fsumcom.3 φ j A k B C
Assertion fsumcom φ j A k B C = k B j A C

Proof

Step Hyp Ref Expression
1 fsumcom.1 φ A Fin
2 fsumcom.2 φ B Fin
3 fsumcom.3 φ j A k B C
4 2 adantr φ j A B Fin
5 ancom j A k B k B j A
6 5 a1i φ j A k B k B j A
7 1 2 4 6 3 fsumcom2 φ j A k B C = k B j A C