Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcom2.1 |
|
2 |
|
fsumcom2.2 |
|
3 |
|
fsumcom2.3 |
|
4 |
|
fsumcom2.4 |
|
5 |
|
fsumcom2.5 |
|
6 |
|
relxp |
|
7 |
6
|
rgenw |
|
8 |
|
reliun |
|
9 |
7 8
|
mpbir |
|
10 |
|
relcnv |
|
11 |
|
ancom |
|
12 |
|
vex |
|
13 |
|
vex |
|
14 |
12 13
|
opth |
|
15 |
13 12
|
opth |
|
16 |
11 14 15
|
3bitr4i |
|
17 |
16
|
a1i |
|
18 |
17 4
|
anbi12d |
|
19 |
18
|
2exbidv |
|
20 |
|
eliunxp |
|
21 |
12 13
|
opelcnv |
|
22 |
|
eliunxp |
|
23 |
|
excom |
|
24 |
21 22 23
|
3bitri |
|
25 |
19 20 24
|
3bitr4g |
|
26 |
9 10 25
|
eqrelrdv |
|
27 |
|
nfcv |
|
28 |
|
nfcv |
|
29 |
|
nfcsb1v |
|
30 |
28 29
|
nfxp |
|
31 |
|
sneq |
|
32 |
|
csbeq1a |
|
33 |
31 32
|
xpeq12d |
|
34 |
27 30 33
|
cbviun |
|
35 |
|
nfcv |
|
36 |
|
nfcv |
|
37 |
|
nfcsb1v |
|
38 |
36 37
|
nfxp |
|
39 |
|
sneq |
|
40 |
|
csbeq1a |
|
41 |
39 40
|
xpeq12d |
|
42 |
35 38 41
|
cbviun |
|
43 |
42
|
cnveqi |
|
44 |
26 34 43
|
3eqtr3g |
|
45 |
44
|
sumeq1d |
|
46 |
|
vex |
|
47 |
|
vex |
|
48 |
46 47
|
op1std |
|
49 |
48
|
csbeq1d |
|
50 |
46 47
|
op2ndd |
|
51 |
50
|
csbeq1d |
|
52 |
51
|
csbeq2dv |
|
53 |
49 52
|
eqtrd |
|
54 |
47 46
|
op2ndd |
|
55 |
54
|
csbeq1d |
|
56 |
47 46
|
op1std |
|
57 |
56
|
csbeq1d |
|
58 |
57
|
csbeq2dv |
|
59 |
55 58
|
eqtrd |
|
60 |
|
snfi |
|
61 |
1
|
adantr |
|
62 |
47 46
|
opelcnv |
|
63 |
37 40
|
opeliunxp2f |
|
64 |
62 63
|
sylbbr |
|
65 |
64
|
adantl |
|
66 |
26
|
adantr |
|
67 |
65 66
|
eleqtrrd |
|
68 |
|
eliun |
|
69 |
67 68
|
sylib |
|
70 |
|
simpr |
|
71 |
|
opelxp |
|
72 |
70 71
|
sylib |
|
73 |
72
|
simpld |
|
74 |
|
elsni |
|
75 |
73 74
|
syl |
|
76 |
|
simpl |
|
77 |
75 76
|
eqeltrd |
|
78 |
77
|
rexlimiva |
|
79 |
69 78
|
syl |
|
80 |
79
|
expr |
|
81 |
80
|
ssrdv |
|
82 |
61 81
|
ssfid |
|
83 |
|
xpfi |
|
84 |
60 82 83
|
sylancr |
|
85 |
84
|
ralrimiva |
|
86 |
|
iunfi |
|
87 |
2 85 86
|
syl2anc |
|
88 |
|
reliun |
|
89 |
|
relxp |
|
90 |
89
|
a1i |
|
91 |
88 90
|
mprgbir |
|
92 |
91
|
a1i |
|
93 |
|
csbeq1 |
|
94 |
93
|
csbeq2dv |
|
95 |
94
|
eleq1d |
|
96 |
|
csbeq1 |
|
97 |
|
csbeq1 |
|
98 |
97
|
eleq1d |
|
99 |
96 98
|
raleqbidv |
|
100 |
|
simpl |
|
101 |
29
|
nfcri |
|
102 |
74
|
equcomd |
|
103 |
102 32
|
syl |
|
104 |
103
|
eleq2d |
|
105 |
104
|
biimpa |
|
106 |
71 105
|
sylbi |
|
107 |
106
|
a1i |
|
108 |
101 107
|
rexlimi |
|
109 |
69 108
|
syl |
|
110 |
5
|
ralrimivva |
|
111 |
|
nfcsb1v |
|
112 |
111
|
nfel1 |
|
113 |
29 112
|
nfralw |
|
114 |
|
csbeq1a |
|
115 |
114
|
eleq1d |
|
116 |
32 115
|
raleqbidv |
|
117 |
113 116
|
rspc |
|
118 |
110 117
|
mpan9 |
|
119 |
|
nfcsb1v |
|
120 |
119
|
nfel1 |
|
121 |
|
csbeq1a |
|
122 |
121
|
eleq1d |
|
123 |
120 122
|
rspc |
|
124 |
118 123
|
syl5com |
|
125 |
124
|
impr |
|
126 |
100 79 109 125
|
syl12anc |
|
127 |
126
|
ralrimivva |
|
128 |
127
|
adantr |
|
129 |
|
simpr |
|
130 |
|
eliun |
|
131 |
129 130
|
sylib |
|
132 |
|
xp1st |
|
133 |
132
|
adantl |
|
134 |
|
elsni |
|
135 |
133 134
|
syl |
|
136 |
|
simpl |
|
137 |
135 136
|
eqeltrd |
|
138 |
137
|
rexlimiva |
|
139 |
131 138
|
syl |
|
140 |
99 128 139
|
rspcdva |
|
141 |
|
xp2nd |
|
142 |
141
|
adantl |
|
143 |
135
|
csbeq1d |
|
144 |
142 143
|
eleqtrrd |
|
145 |
144
|
rexlimiva |
|
146 |
131 145
|
syl |
|
147 |
95 140 146
|
rspcdva |
|
148 |
53 59 87 92 147
|
fsumcnv |
|
149 |
45 148
|
eqtr4d |
|
150 |
3
|
ralrimiva |
|
151 |
29
|
nfel1 |
|
152 |
32
|
eleq1d |
|
153 |
151 152
|
rspc |
|
154 |
150 153
|
mpan9 |
|
155 |
59 1 154 125
|
fsum2d |
|
156 |
53 2 82 126
|
fsum2d |
|
157 |
149 155 156
|
3eqtr4d |
|
158 |
|
nfcv |
|
159 |
|
nfcv |
|
160 |
159 111
|
nfcsbw |
|
161 |
29 160
|
nfsum |
|
162 |
|
nfcv |
|
163 |
|
nfcsb1v |
|
164 |
|
csbeq1a |
|
165 |
162 163 164
|
cbvsumi |
|
166 |
114
|
csbeq2dv |
|
167 |
166
|
adantr |
|
168 |
32 167
|
sumeq12dv |
|
169 |
165 168
|
eqtrid |
|
170 |
158 161 169
|
cbvsumi |
|
171 |
|
nfcv |
|
172 |
37 119
|
nfsum |
|
173 |
|
nfcv |
|
174 |
173 111 114
|
cbvsumi |
|
175 |
121
|
adantr |
|
176 |
40 175
|
sumeq12dv |
|
177 |
174 176
|
eqtrid |
|
178 |
171 172 177
|
cbvsumi |
|
179 |
157 170 178
|
3eqtr4g |
|