Step |
Hyp |
Ref |
Expression |
1 |
|
mul02 |
|
2 |
1
|
adantl |
|
3 |
2
|
eqcomd |
|
4 |
|
sumeq1 |
|
5 |
|
sum0 |
|
6 |
4 5
|
eqtrdi |
|
7 |
|
fveq2 |
|
8 |
|
hash0 |
|
9 |
7 8
|
eqtrdi |
|
10 |
9
|
oveq1d |
|
11 |
6 10
|
eqeq12d |
|
12 |
3 11
|
syl5ibrcom |
|
13 |
|
eqidd |
|
14 |
|
simprl |
|
15 |
|
simprr |
|
16 |
|
simpllr |
|
17 |
|
simplr |
|
18 |
|
elfznn |
|
19 |
|
fvconst2g |
|
20 |
17 18 19
|
syl2an |
|
21 |
13 14 15 16 20
|
fsum |
|
22 |
|
ser1const |
|
23 |
22
|
ad2ant2lr |
|
24 |
21 23
|
eqtrd |
|
25 |
24
|
expr |
|
26 |
25
|
exlimdv |
|
27 |
26
|
expimpd |
|
28 |
|
fz1f1o |
|
29 |
28
|
adantr |
|
30 |
12 27 29
|
mpjaod |
|