Metamath Proof Explorer


Theorem fsumcvg3

Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumcvg3.1 Z = M
fsumcvg3.2 φ M
fsumcvg3.3 φ A Fin
fsumcvg3.4 φ A Z
fsumcvg3.5 φ k Z F k = if k A B 0
fsumcvg3.6 φ k A B
Assertion fsumcvg3 φ seq M + F dom

Proof

Step Hyp Ref Expression
1 fsumcvg3.1 Z = M
2 fsumcvg3.2 φ M
3 fsumcvg3.3 φ A Fin
4 fsumcvg3.4 φ A Z
5 fsumcvg3.5 φ k Z F k = if k A B 0
6 fsumcvg3.6 φ k A B
7 sseq1 A = A M n M n
8 7 rexbidv A = n M A M n n M M n
9 4 adantr φ A A Z
10 9 1 sseqtrdi φ A A M
11 ltso < Or
12 3 adantr φ A A Fin
13 simpr φ A A
14 uzssz M
15 zssre
16 14 15 sstri M
17 1 16 eqsstri Z
18 9 17 sstrdi φ A A
19 12 13 18 3jca φ A A Fin A A
20 fisupcl < Or A Fin A A sup A < A
21 11 19 20 sylancr φ A sup A < A
22 10 21 sseldd φ A sup A < M
23 fimaxre2 A A Fin k n A n k
24 18 12 23 syl2anc φ A k n A n k
25 18 13 24 3jca φ A A A k n A n k
26 suprub A A k n A n k k A k sup A <
27 25 26 sylan φ A k A k sup A <
28 10 sselda φ A k A k M
29 14 22 sselid φ A sup A <
30 29 adantr φ A k A sup A <
31 elfz5 k M sup A < k M sup A < k sup A <
32 28 30 31 syl2anc φ A k A k M sup A < k sup A <
33 27 32 mpbird φ A k A k M sup A <
34 33 ex φ A k A k M sup A <
35 34 ssrdv φ A A M sup A <
36 oveq2 n = sup A < M n = M sup A <
37 36 sseq2d n = sup A < A M n A M sup A <
38 37 rspcev sup A < M A M sup A < n M A M n
39 22 35 38 syl2anc φ A n M A M n
40 uzid M M M
41 2 40 syl φ M M
42 0ss M M
43 oveq2 n = M M n = M M
44 43 sseq2d n = M M n M M
45 44 rspcev M M M M n M M n
46 41 42 45 sylancl φ n M M n
47 8 39 46 pm2.61ne φ n M A M n
48 1 eleq2i k Z k M
49 48 5 sylan2br φ k M F k = if k A B 0
50 49 adantlr φ n M A M n k M F k = if k A B 0
51 simprl φ n M A M n n M
52 6 adantlr φ n M A M n k A B
53 simprr φ n M A M n A M n
54 50 51 52 53 fsumcvg2 φ n M A M n seq M + F seq M + F n
55 climrel Rel
56 55 releldmi seq M + F seq M + F n seq M + F dom
57 54 56 syl φ n M A M n seq M + F dom
58 47 57 rexlimddv φ seq M + F dom