Metamath Proof Explorer


Theorem fsumdifsnconst

Description: The sum of constant terms ( k is not free in C ) over an index set excluding a singleton. (Contributed by AV, 7-Jan-2022)

Ref Expression
Assertion fsumdifsnconst A Fin B A C k A B C = A 1 C

Proof

Step Hyp Ref Expression
1 diffi A Fin A B Fin
2 1 anim1i A Fin C A B Fin C
3 2 3adant2 A Fin B A C A B Fin C
4 fsumconst A B Fin C k A B C = A B C
5 3 4 syl A Fin B A C k A B C = A B C
6 hashdifsn A Fin B A A B = A 1
7 6 3adant3 A Fin B A C A B = A 1
8 7 oveq1d A Fin B A C A B C = A 1 C
9 5 8 eqtrd A Fin B A C k A B C = A 1 C