Metamath Proof Explorer


Theorem fsumdivc

Description: A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsummulc2.1 φ A Fin
fsummulc2.2 φ C
fsummulc2.3 φ k A B
fsumdivc.4 φ C 0
Assertion fsumdivc φ k A B C = k A B C

Proof

Step Hyp Ref Expression
1 fsummulc2.1 φ A Fin
2 fsummulc2.2 φ C
3 fsummulc2.3 φ k A B
4 fsumdivc.4 φ C 0
5 2 4 reccld φ 1 C
6 1 5 3 fsummulc1 φ k A B 1 C = k A B 1 C
7 1 3 fsumcl φ k A B
8 7 2 4 divrecd φ k A B C = k A B 1 C
9 2 adantr φ k A C
10 4 adantr φ k A C 0
11 3 9 10 divrecd φ k A B C = B 1 C
12 11 sumeq2dv φ k A B C = k A B 1 C
13 6 8 12 3eqtr4d φ k A B C = k A B C