Metamath Proof Explorer


Theorem fsumdvdsdiag

Description: A "diagonal commutation" of divisor sums analogous to fsum0diag . (Contributed by Mario Carneiro, 2-Jul-2015) (Revised by Mario Carneiro, 8-Apr-2016)

Ref Expression
Hypotheses fsumdvdsdiag.1 φ N
fsumdvdsdiag.2 φ j x | x N k x | x N j A
Assertion fsumdvdsdiag φ j x | x N k x | x N j A = k x | x N j x | x N k A

Proof

Step Hyp Ref Expression
1 fsumdvdsdiag.1 φ N
2 fsumdvdsdiag.2 φ j x | x N k x | x N j A
3 fzfid φ 1 N Fin
4 dvdsssfz1 N x | x N 1 N
5 1 4 syl φ x | x N 1 N
6 3 5 ssfid φ x | x N Fin
7 fzfid φ j x | x N 1 N j Fin
8 ssrab2 x | x N
9 dvdsdivcl N j x | x N N j x | x N
10 1 9 sylan φ j x | x N N j x | x N
11 8 10 sselid φ j x | x N N j
12 dvdsssfz1 N j x | x N j 1 N j
13 11 12 syl φ j x | x N x | x N j 1 N j
14 7 13 ssfid φ j x | x N x | x N j Fin
15 1 fsumdvdsdiaglem φ j x | x N k x | x N j k x | x N j x | x N k
16 1 fsumdvdsdiaglem φ k x | x N j x | x N k j x | x N k x | x N j
17 15 16 impbid φ j x | x N k x | x N j k x | x N j x | x N k
18 6 6 14 17 2 fsumcom2 φ j x | x N k x | x N j A = k x | x N j x | x N k A