Metamath Proof Explorer


Theorem fsumdvdsdiaglem

Description: A "diagonal commutation" of divisor sums analogous to fsum0diag . (Contributed by Mario Carneiro, 2-Jul-2015) (Revised by Mario Carneiro, 8-Apr-2016)

Ref Expression
Hypothesis fsumdvdsdiag.1 φN
Assertion fsumdvdsdiaglem φjx|xNkx|xNjkx|xNjx|xNk

Proof

Step Hyp Ref Expression
1 fsumdvdsdiag.1 φN
2 breq1 x=kxNkN
3 elrabi kx|xNjk
4 3 ad2antll φjx|xNkx|xNjk
5 4 nnzd φjx|xNkx|xNjk
6 1 adantr φjx|xNkx|xNjN
7 simprl φjx|xNkx|xNjjx|xN
8 dvdsdivcl Njx|xNNjx|xN
9 6 7 8 syl2anc φjx|xNkx|xNjNjx|xN
10 elrabi Njx|xNNj
11 9 10 syl φjx|xNkx|xNjNj
12 11 nnzd φjx|xNkx|xNjNj
13 6 nnzd φjx|xNkx|xNjN
14 breq1 x=kxNjkNj
15 14 elrab kx|xNjkkNj
16 15 simprbi kx|xNjkNj
17 16 ad2antll φjx|xNkx|xNjkNj
18 breq1 x=NjxNNjN
19 18 elrab Njx|xNNjNjN
20 19 simprbi Njx|xNNjN
21 9 20 syl φjx|xNkx|xNjNjN
22 5 12 13 17 21 dvdstrd φjx|xNkx|xNjkN
23 2 4 22 elrabd φjx|xNkx|xNjkx|xN
24 breq1 x=jxNkjNk
25 elrabi jx|xNj
26 25 ad2antrl φjx|xNkx|xNjj
27 26 nnzd φjx|xNkx|xNjj
28 26 nnne0d φjx|xNkx|xNjj0
29 dvdsmulcr kNjjj0kjNjjkNj
30 5 12 27 28 29 syl112anc φjx|xNkx|xNjkjNjjkNj
31 17 30 mpbird φjx|xNkx|xNjkjNjj
32 6 nncnd φjx|xNkx|xNjN
33 26 nncnd φjx|xNkx|xNjj
34 32 33 28 divcan1d φjx|xNkx|xNjNjj=N
35 4 nncnd φjx|xNkx|xNjk
36 4 nnne0d φjx|xNkx|xNjk0
37 32 35 36 divcan2d φjx|xNkx|xNjkNk=N
38 34 37 eqtr4d φjx|xNkx|xNjNjj=kNk
39 31 38 breqtrd φjx|xNkx|xNjkjkNk
40 ssrab2 x|xN
41 dvdsdivcl Nkx|xNNkx|xN
42 6 23 41 syl2anc φjx|xNkx|xNjNkx|xN
43 40 42 sselid φjx|xNkx|xNjNk
44 43 nnzd φjx|xNkx|xNjNk
45 dvdscmulr jNkkk0kjkNkjNk
46 27 44 5 36 45 syl112anc φjx|xNkx|xNjkjkNkjNk
47 39 46 mpbid φjx|xNkx|xNjjNk
48 24 26 47 elrabd φjx|xNkx|xNjjx|xNk
49 23 48 jca φjx|xNkx|xNjkx|xNjx|xNk
50 49 ex φjx|xNkx|xNjkx|xNjx|xNk