Metamath Proof Explorer


Theorem fsumdvdsdiaglem

Description: A "diagonal commutation" of divisor sums analogous to fsum0diag . (Contributed by Mario Carneiro, 2-Jul-2015) (Revised by Mario Carneiro, 8-Apr-2016)

Ref Expression
Hypothesis fsumdvdsdiag.1 φ N
Assertion fsumdvdsdiaglem φ j x | x N k x | x N j k x | x N j x | x N k

Proof

Step Hyp Ref Expression
1 fsumdvdsdiag.1 φ N
2 breq1 x = k x N k N
3 elrabi k x | x N j k
4 3 ad2antll φ j x | x N k x | x N j k
5 4 nnzd φ j x | x N k x | x N j k
6 1 adantr φ j x | x N k x | x N j N
7 simprl φ j x | x N k x | x N j j x | x N
8 dvdsdivcl N j x | x N N j x | x N
9 6 7 8 syl2anc φ j x | x N k x | x N j N j x | x N
10 elrabi N j x | x N N j
11 9 10 syl φ j x | x N k x | x N j N j
12 11 nnzd φ j x | x N k x | x N j N j
13 6 nnzd φ j x | x N k x | x N j N
14 breq1 x = k x N j k N j
15 14 elrab k x | x N j k k N j
16 15 simprbi k x | x N j k N j
17 16 ad2antll φ j x | x N k x | x N j k N j
18 breq1 x = N j x N N j N
19 18 elrab N j x | x N N j N j N
20 19 simprbi N j x | x N N j N
21 9 20 syl φ j x | x N k x | x N j N j N
22 5 12 13 17 21 dvdstrd φ j x | x N k x | x N j k N
23 2 4 22 elrabd φ j x | x N k x | x N j k x | x N
24 breq1 x = j x N k j N k
25 elrabi j x | x N j
26 25 ad2antrl φ j x | x N k x | x N j j
27 26 nnzd φ j x | x N k x | x N j j
28 26 nnne0d φ j x | x N k x | x N j j 0
29 dvdsmulcr k N j j j 0 k j N j j k N j
30 5 12 27 28 29 syl112anc φ j x | x N k x | x N j k j N j j k N j
31 17 30 mpbird φ j x | x N k x | x N j k j N j j
32 6 nncnd φ j x | x N k x | x N j N
33 26 nncnd φ j x | x N k x | x N j j
34 32 33 28 divcan1d φ j x | x N k x | x N j N j j = N
35 4 nncnd φ j x | x N k x | x N j k
36 4 nnne0d φ j x | x N k x | x N j k 0
37 32 35 36 divcan2d φ j x | x N k x | x N j k N k = N
38 34 37 eqtr4d φ j x | x N k x | x N j N j j = k N k
39 31 38 breqtrd φ j x | x N k x | x N j k j k N k
40 ssrab2 x | x N
41 dvdsdivcl N k x | x N N k x | x N
42 6 23 41 syl2anc φ j x | x N k x | x N j N k x | x N
43 40 42 sselid φ j x | x N k x | x N j N k
44 43 nnzd φ j x | x N k x | x N j N k
45 dvdscmulr j N k k k 0 k j k N k j N k
46 27 44 5 36 45 syl112anc φ j x | x N k x | x N j k j k N k j N k
47 39 46 mpbid φ j x | x N k x | x N j j N k
48 24 26 47 elrabd φ j x | x N k x | x N j j x | x N k
49 23 48 jca φ j x | x N k x | x N j k x | x N j x | x N k
50 49 ex φ j x | x N k x | x N j k x | x N j x | x N k