Step |
Hyp |
Ref |
Expression |
1 |
|
fsumf1o.1 |
|
2 |
|
fsumf1o.2 |
|
3 |
|
fsumf1o.3 |
|
4 |
|
fsumf1o.4 |
|
5 |
|
fsumf1o.5 |
|
6 |
|
sum0 |
|
7 |
|
f1oeq2 |
|
8 |
3 7
|
syl5ibcom |
|
9 |
8
|
imp |
|
10 |
|
f1ofo |
|
11 |
|
fo00 |
|
12 |
11
|
simprbi |
|
13 |
9 10 12
|
3syl |
|
14 |
13
|
sumeq1d |
|
15 |
|
simpr |
|
16 |
15
|
sumeq1d |
|
17 |
|
sum0 |
|
18 |
16 17
|
eqtrdi |
|
19 |
6 14 18
|
3eqtr4a |
|
20 |
19
|
ex |
|
21 |
|
2fveq3 |
|
22 |
|
simprl |
|
23 |
|
simprr |
|
24 |
|
f1of |
|
25 |
3 24
|
syl |
|
26 |
25
|
ffvelrnda |
|
27 |
5
|
fmpttd |
|
28 |
27
|
ffvelrnda |
|
29 |
26 28
|
syldan |
|
30 |
29
|
adantlr |
|
31 |
|
f1oco |
|
32 |
3 23 31
|
syl2an2r |
|
33 |
|
f1of |
|
34 |
32 33
|
syl |
|
35 |
|
fvco3 |
|
36 |
34 35
|
sylan |
|
37 |
|
f1of |
|
38 |
37
|
ad2antll |
|
39 |
|
fvco3 |
|
40 |
38 39
|
sylan |
|
41 |
40
|
fveq2d |
|
42 |
36 41
|
eqtrd |
|
43 |
21 22 23 30 42
|
fsum |
|
44 |
25
|
ffvelrnda |
|
45 |
4 44
|
eqeltrrd |
|
46 |
|
eqid |
|
47 |
1 46
|
fvmpti |
|
48 |
45 47
|
syl |
|
49 |
4
|
fveq2d |
|
50 |
|
eqid |
|
51 |
50
|
fvmpt2i |
|
52 |
51
|
adantl |
|
53 |
48 49 52
|
3eqtr4rd |
|
54 |
53
|
ralrimiva |
|
55 |
|
nffvmpt1 |
|
56 |
55
|
nfeq1 |
|
57 |
|
fveq2 |
|
58 |
|
2fveq3 |
|
59 |
57 58
|
eqeq12d |
|
60 |
56 59
|
rspc |
|
61 |
54 60
|
mpan9 |
|
62 |
61
|
adantlr |
|
63 |
62
|
sumeq2dv |
|
64 |
|
fveq2 |
|
65 |
27
|
adantr |
|
66 |
65
|
ffvelrnda |
|
67 |
64 22 32 66 36
|
fsum |
|
68 |
43 63 67
|
3eqtr4rd |
|
69 |
|
sumfc |
|
70 |
|
sumfc |
|
71 |
68 69 70
|
3eqtr3g |
|
72 |
71
|
expr |
|
73 |
72
|
exlimdv |
|
74 |
73
|
expimpd |
|
75 |
|
fz1f1o |
|
76 |
2 75
|
syl |
|
77 |
20 74 76
|
mpjaod |
|