| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumf1o.1 |
|
| 2 |
|
fsumf1o.2 |
|
| 3 |
|
fsumf1o.3 |
|
| 4 |
|
fsumf1o.4 |
|
| 5 |
|
fsumf1o.5 |
|
| 6 |
|
sum0 |
|
| 7 |
|
f1oeq2 |
|
| 8 |
3 7
|
syl5ibcom |
|
| 9 |
8
|
imp |
|
| 10 |
|
f1ofo |
|
| 11 |
|
fo00 |
|
| 12 |
11
|
simprbi |
|
| 13 |
9 10 12
|
3syl |
|
| 14 |
13
|
sumeq1d |
|
| 15 |
|
simpr |
|
| 16 |
15
|
sumeq1d |
|
| 17 |
|
sum0 |
|
| 18 |
16 17
|
eqtrdi |
|
| 19 |
6 14 18
|
3eqtr4a |
|
| 20 |
19
|
ex |
|
| 21 |
|
2fveq3 |
|
| 22 |
|
simprl |
|
| 23 |
|
simprr |
|
| 24 |
|
f1of |
|
| 25 |
3 24
|
syl |
|
| 26 |
25
|
ffvelcdmda |
|
| 27 |
5
|
fmpttd |
|
| 28 |
27
|
ffvelcdmda |
|
| 29 |
26 28
|
syldan |
|
| 30 |
29
|
adantlr |
|
| 31 |
|
f1oco |
|
| 32 |
3 23 31
|
syl2an2r |
|
| 33 |
|
f1of |
|
| 34 |
32 33
|
syl |
|
| 35 |
|
fvco3 |
|
| 36 |
34 35
|
sylan |
|
| 37 |
|
f1of |
|
| 38 |
37
|
ad2antll |
|
| 39 |
|
fvco3 |
|
| 40 |
38 39
|
sylan |
|
| 41 |
40
|
fveq2d |
|
| 42 |
36 41
|
eqtrd |
|
| 43 |
21 22 23 30 42
|
fsum |
|
| 44 |
25
|
ffvelcdmda |
|
| 45 |
4 44
|
eqeltrrd |
|
| 46 |
|
eqid |
|
| 47 |
1 46
|
fvmpti |
|
| 48 |
45 47
|
syl |
|
| 49 |
4
|
fveq2d |
|
| 50 |
|
eqid |
|
| 51 |
50
|
fvmpt2i |
|
| 52 |
51
|
adantl |
|
| 53 |
48 49 52
|
3eqtr4rd |
|
| 54 |
53
|
ralrimiva |
|
| 55 |
|
nffvmpt1 |
|
| 56 |
55
|
nfeq1 |
|
| 57 |
|
fveq2 |
|
| 58 |
|
2fveq3 |
|
| 59 |
57 58
|
eqeq12d |
|
| 60 |
56 59
|
rspc |
|
| 61 |
54 60
|
mpan9 |
|
| 62 |
61
|
adantlr |
|
| 63 |
62
|
sumeq2dv |
|
| 64 |
|
fveq2 |
|
| 65 |
27
|
adantr |
|
| 66 |
65
|
ffvelcdmda |
|
| 67 |
64 22 32 66 36
|
fsum |
|
| 68 |
43 63 67
|
3eqtr4rd |
|
| 69 |
|
sumfc |
|
| 70 |
|
sumfc |
|
| 71 |
68 69 70
|
3eqtr3g |
|
| 72 |
71
|
expr |
|
| 73 |
72
|
exlimdv |
|
| 74 |
73
|
expimpd |
|
| 75 |
|
fz1f1o |
|
| 76 |
2 75
|
syl |
|
| 77 |
20 74 76
|
mpjaod |
|