Metamath Proof Explorer


Theorem fsumf1of

Description: Re-index a finite sum using a bijection. Same as fsumf1o , but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fsumf1of.1 k φ
fsumf1of.2 n φ
fsumf1of.3 k = G B = D
fsumf1of.4 φ C Fin
fsumf1of.5 φ F : C 1-1 onto A
fsumf1of.6 φ n C F n = G
fsumf1of.7 φ k A B
Assertion fsumf1of φ k A B = n C D

Proof

Step Hyp Ref Expression
1 fsumf1of.1 k φ
2 fsumf1of.2 n φ
3 fsumf1of.3 k = G B = D
4 fsumf1of.4 φ C Fin
5 fsumf1of.5 φ F : C 1-1 onto A
6 fsumf1of.6 φ n C F n = G
7 fsumf1of.7 φ k A B
8 csbeq1a k = i B = i / k B
9 nfcv _ i A
10 nfcv _ k A
11 nfcv _ i B
12 nfcsb1v _ k i / k B
13 8 9 10 11 12 cbvsum k A B = i A i / k B
14 13 a1i φ k A B = i A i / k B
15 nfv k i = j / n G
16 nfcv _ k j / n D
17 12 16 nfeq k i / k B = j / n D
18 15 17 nfim k i = j / n G i / k B = j / n D
19 eqeq1 k = i k = j / n G i = j / n G
20 8 eqeq1d k = i B = j / n D i / k B = j / n D
21 19 20 imbi12d k = i k = j / n G B = j / n D i = j / n G i / k B = j / n D
22 nfcv _ n k
23 nfcsb1v _ n j / n G
24 22 23 nfeq n k = j / n G
25 nfcv _ n B
26 nfcsb1v _ n j / n D
27 25 26 nfeq n B = j / n D
28 24 27 nfim n k = j / n G B = j / n D
29 csbeq1a n = j G = j / n G
30 29 eqeq2d n = j k = G k = j / n G
31 csbeq1a n = j D = j / n D
32 31 eqeq2d n = j B = D B = j / n D
33 30 32 imbi12d n = j k = G B = D k = j / n G B = j / n D
34 28 33 3 chvarfv k = j / n G B = j / n D
35 18 21 34 chvarfv i = j / n G i / k B = j / n D
36 nfv n j C
37 2 36 nfan n φ j C
38 nfcv _ n F j
39 38 23 nfeq n F j = j / n G
40 37 39 nfim n φ j C F j = j / n G
41 eleq1w n = j n C j C
42 41 anbi2d n = j φ n C φ j C
43 fveq2 n = j F n = F j
44 43 29 eqeq12d n = j F n = G F j = j / n G
45 42 44 imbi12d n = j φ n C F n = G φ j C F j = j / n G
46 40 45 6 chvarfv φ j C F j = j / n G
47 nfv k i A
48 1 47 nfan k φ i A
49 12 nfel1 k i / k B
50 48 49 nfim k φ i A i / k B
51 eleq1w k = i k A i A
52 51 anbi2d k = i φ k A φ i A
53 8 eleq1d k = i B i / k B
54 52 53 imbi12d k = i φ k A B φ i A i / k B
55 50 54 7 chvarfv φ i A i / k B
56 35 4 5 46 55 fsumf1o φ i A i / k B = j C j / n D
57 nfcv _ j C
58 nfcv _ n C
59 nfcv _ j D
60 31 57 58 59 26 cbvsum n C D = j C j / n D
61 60 eqcomi j C j / n D = n C D
62 61 a1i φ j C j / n D = n C D
63 14 56 62 3eqtrd φ k A B = n C D