| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumf1of.1 |
|
| 2 |
|
fsumf1of.2 |
|
| 3 |
|
fsumf1of.3 |
|
| 4 |
|
fsumf1of.4 |
|
| 5 |
|
fsumf1of.5 |
|
| 6 |
|
fsumf1of.6 |
|
| 7 |
|
fsumf1of.7 |
|
| 8 |
|
csbeq1a |
|
| 9 |
|
nfcv |
|
| 10 |
|
nfcsb1v |
|
| 11 |
8 9 10
|
cbvsum |
|
| 12 |
11
|
a1i |
|
| 13 |
|
nfv |
|
| 14 |
|
nfcv |
|
| 15 |
10 14
|
nfeq |
|
| 16 |
13 15
|
nfim |
|
| 17 |
|
eqeq1 |
|
| 18 |
8
|
eqeq1d |
|
| 19 |
17 18
|
imbi12d |
|
| 20 |
|
nfcv |
|
| 21 |
|
nfcsb1v |
|
| 22 |
20 21
|
nfeq |
|
| 23 |
|
nfcv |
|
| 24 |
|
nfcsb1v |
|
| 25 |
23 24
|
nfeq |
|
| 26 |
22 25
|
nfim |
|
| 27 |
|
csbeq1a |
|
| 28 |
27
|
eqeq2d |
|
| 29 |
|
csbeq1a |
|
| 30 |
29
|
eqeq2d |
|
| 31 |
28 30
|
imbi12d |
|
| 32 |
26 31 3
|
chvarfv |
|
| 33 |
16 19 32
|
chvarfv |
|
| 34 |
|
nfv |
|
| 35 |
2 34
|
nfan |
|
| 36 |
|
nfcv |
|
| 37 |
36 21
|
nfeq |
|
| 38 |
35 37
|
nfim |
|
| 39 |
|
eleq1w |
|
| 40 |
39
|
anbi2d |
|
| 41 |
|
fveq2 |
|
| 42 |
41 27
|
eqeq12d |
|
| 43 |
40 42
|
imbi12d |
|
| 44 |
38 43 6
|
chvarfv |
|
| 45 |
|
nfv |
|
| 46 |
1 45
|
nfan |
|
| 47 |
10
|
nfel1 |
|
| 48 |
46 47
|
nfim |
|
| 49 |
|
eleq1w |
|
| 50 |
49
|
anbi2d |
|
| 51 |
8
|
eleq1d |
|
| 52 |
50 51
|
imbi12d |
|
| 53 |
48 52 7
|
chvarfv |
|
| 54 |
33 4 5 44 53
|
fsumf1o |
|
| 55 |
|
nfcv |
|
| 56 |
29 55 24
|
cbvsum |
|
| 57 |
56
|
eqcomi |
|
| 58 |
57
|
a1i |
|
| 59 |
12 54 58
|
3eqtrd |
|