Metamath Proof Explorer


Theorem fsumf1of

Description: Re-index a finite sum using a bijection. Same as fsumf1o , but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fsumf1of.1 k φ
fsumf1of.2 n φ
fsumf1of.3 k = G B = D
fsumf1of.4 φ C Fin
fsumf1of.5 φ F : C 1-1 onto A
fsumf1of.6 φ n C F n = G
fsumf1of.7 φ k A B
Assertion fsumf1of φ k A B = n C D

Proof

Step Hyp Ref Expression
1 fsumf1of.1 k φ
2 fsumf1of.2 n φ
3 fsumf1of.3 k = G B = D
4 fsumf1of.4 φ C Fin
5 fsumf1of.5 φ F : C 1-1 onto A
6 fsumf1of.6 φ n C F n = G
7 fsumf1of.7 φ k A B
8 csbeq1a k = i B = i / k B
9 nfcv _ i B
10 nfcsb1v _ k i / k B
11 8 9 10 cbvsum k A B = i A i / k B
12 11 a1i φ k A B = i A i / k B
13 nfv k i = j / n G
14 nfcv _ k j / n D
15 10 14 nfeq k i / k B = j / n D
16 13 15 nfim k i = j / n G i / k B = j / n D
17 eqeq1 k = i k = j / n G i = j / n G
18 8 eqeq1d k = i B = j / n D i / k B = j / n D
19 17 18 imbi12d k = i k = j / n G B = j / n D i = j / n G i / k B = j / n D
20 nfcv _ n k
21 nfcsb1v _ n j / n G
22 20 21 nfeq n k = j / n G
23 nfcv _ n B
24 nfcsb1v _ n j / n D
25 23 24 nfeq n B = j / n D
26 22 25 nfim n k = j / n G B = j / n D
27 csbeq1a n = j G = j / n G
28 27 eqeq2d n = j k = G k = j / n G
29 csbeq1a n = j D = j / n D
30 29 eqeq2d n = j B = D B = j / n D
31 28 30 imbi12d n = j k = G B = D k = j / n G B = j / n D
32 26 31 3 chvarfv k = j / n G B = j / n D
33 16 19 32 chvarfv i = j / n G i / k B = j / n D
34 nfv n j C
35 2 34 nfan n φ j C
36 nfcv _ n F j
37 36 21 nfeq n F j = j / n G
38 35 37 nfim n φ j C F j = j / n G
39 eleq1w n = j n C j C
40 39 anbi2d n = j φ n C φ j C
41 fveq2 n = j F n = F j
42 41 27 eqeq12d n = j F n = G F j = j / n G
43 40 42 imbi12d n = j φ n C F n = G φ j C F j = j / n G
44 38 43 6 chvarfv φ j C F j = j / n G
45 nfv k i A
46 1 45 nfan k φ i A
47 10 nfel1 k i / k B
48 46 47 nfim k φ i A i / k B
49 eleq1w k = i k A i A
50 49 anbi2d k = i φ k A φ i A
51 8 eleq1d k = i B i / k B
52 50 51 imbi12d k = i φ k A B φ i A i / k B
53 48 52 7 chvarfv φ i A i / k B
54 33 4 5 44 53 fsumf1o φ i A i / k B = j C j / n D
55 nfcv _ j D
56 29 55 24 cbvsum n C D = j C j / n D
57 56 eqcomi j C j / n D = n C D
58 57 a1i φ j C j / n D = n C D
59 12 54 58 3eqtrd φ k A B = n C D