Step |
Hyp |
Ref |
Expression |
1 |
|
fsumf1of.1 |
|
2 |
|
fsumf1of.2 |
|
3 |
|
fsumf1of.3 |
|
4 |
|
fsumf1of.4 |
|
5 |
|
fsumf1of.5 |
|
6 |
|
fsumf1of.6 |
|
7 |
|
fsumf1of.7 |
|
8 |
|
csbeq1a |
|
9 |
|
nfcv |
|
10 |
|
nfcv |
|
11 |
|
nfcv |
|
12 |
|
nfcsb1v |
|
13 |
8 9 10 11 12
|
cbvsum |
|
14 |
13
|
a1i |
|
15 |
|
nfv |
|
16 |
|
nfcv |
|
17 |
12 16
|
nfeq |
|
18 |
15 17
|
nfim |
|
19 |
|
eqeq1 |
|
20 |
8
|
eqeq1d |
|
21 |
19 20
|
imbi12d |
|
22 |
|
nfcv |
|
23 |
|
nfcsb1v |
|
24 |
22 23
|
nfeq |
|
25 |
|
nfcv |
|
26 |
|
nfcsb1v |
|
27 |
25 26
|
nfeq |
|
28 |
24 27
|
nfim |
|
29 |
|
csbeq1a |
|
30 |
29
|
eqeq2d |
|
31 |
|
csbeq1a |
|
32 |
31
|
eqeq2d |
|
33 |
30 32
|
imbi12d |
|
34 |
28 33 3
|
chvarfv |
|
35 |
18 21 34
|
chvarfv |
|
36 |
|
nfv |
|
37 |
2 36
|
nfan |
|
38 |
|
nfcv |
|
39 |
38 23
|
nfeq |
|
40 |
37 39
|
nfim |
|
41 |
|
eleq1w |
|
42 |
41
|
anbi2d |
|
43 |
|
fveq2 |
|
44 |
43 29
|
eqeq12d |
|
45 |
42 44
|
imbi12d |
|
46 |
40 45 6
|
chvarfv |
|
47 |
|
nfv |
|
48 |
1 47
|
nfan |
|
49 |
12
|
nfel1 |
|
50 |
48 49
|
nfim |
|
51 |
|
eleq1w |
|
52 |
51
|
anbi2d |
|
53 |
8
|
eleq1d |
|
54 |
52 53
|
imbi12d |
|
55 |
50 54 7
|
chvarfv |
|
56 |
35 4 5 46 55
|
fsumf1o |
|
57 |
|
nfcv |
|
58 |
|
nfcv |
|
59 |
|
nfcv |
|
60 |
31 57 58 59 26
|
cbvsum |
|
61 |
60
|
eqcomi |
|
62 |
61
|
a1i |
|
63 |
14 56 62
|
3eqtrd |
|