Step |
Hyp |
Ref |
Expression |
1 |
|
fsumf1of.1 |
|
2 |
|
fsumf1of.2 |
|
3 |
|
fsumf1of.3 |
|
4 |
|
fsumf1of.4 |
|
5 |
|
fsumf1of.5 |
|
6 |
|
fsumf1of.6 |
|
7 |
|
fsumf1of.7 |
|
8 |
|
csbeq1a |
|
9 |
|
nfcv |
|
10 |
|
nfcsb1v |
|
11 |
8 9 10
|
cbvsum |
|
12 |
11
|
a1i |
|
13 |
|
nfv |
|
14 |
|
nfcv |
|
15 |
10 14
|
nfeq |
|
16 |
13 15
|
nfim |
|
17 |
|
eqeq1 |
|
18 |
8
|
eqeq1d |
|
19 |
17 18
|
imbi12d |
|
20 |
|
nfcv |
|
21 |
|
nfcsb1v |
|
22 |
20 21
|
nfeq |
|
23 |
|
nfcv |
|
24 |
|
nfcsb1v |
|
25 |
23 24
|
nfeq |
|
26 |
22 25
|
nfim |
|
27 |
|
csbeq1a |
|
28 |
27
|
eqeq2d |
|
29 |
|
csbeq1a |
|
30 |
29
|
eqeq2d |
|
31 |
28 30
|
imbi12d |
|
32 |
26 31 3
|
chvarfv |
|
33 |
16 19 32
|
chvarfv |
|
34 |
|
nfv |
|
35 |
2 34
|
nfan |
|
36 |
|
nfcv |
|
37 |
36 21
|
nfeq |
|
38 |
35 37
|
nfim |
|
39 |
|
eleq1w |
|
40 |
39
|
anbi2d |
|
41 |
|
fveq2 |
|
42 |
41 27
|
eqeq12d |
|
43 |
40 42
|
imbi12d |
|
44 |
38 43 6
|
chvarfv |
|
45 |
|
nfv |
|
46 |
1 45
|
nfan |
|
47 |
10
|
nfel1 |
|
48 |
46 47
|
nfim |
|
49 |
|
eleq1w |
|
50 |
49
|
anbi2d |
|
51 |
8
|
eleq1d |
|
52 |
50 51
|
imbi12d |
|
53 |
48 52 7
|
chvarfv |
|
54 |
33 4 5 44 53
|
fsumf1o |
|
55 |
|
nfcv |
|
56 |
29 55 24
|
cbvsum |
|
57 |
56
|
eqcomi |
|
58 |
57
|
a1i |
|
59 |
12 54 58
|
3eqtrd |
|