Metamath Proof Explorer


Theorem fsumfldivdiag

Description: The right-hand side of dvdsflsumcom is commutative in the variables, because it can be written as the manifestly symmetric sum over those <. m , n >. such that m x. n <_ A . (Contributed by Mario Carneiro, 4-May-2016)

Ref Expression
Hypotheses fsumfldivdiag.1 φ A
fsumfldivdiag.2 φ n 1 A m 1 A n B
Assertion fsumfldivdiag φ n = 1 A m = 1 A n B = m = 1 A n = 1 A m B

Proof

Step Hyp Ref Expression
1 fsumfldivdiag.1 φ A
2 fsumfldivdiag.2 φ n 1 A m 1 A n B
3 fzfid φ 1 A Fin
4 fzfid φ n 1 A 1 A n Fin
5 1 fsumfldivdiaglem φ n 1 A m 1 A n m 1 A n 1 A m
6 1 fsumfldivdiaglem φ m 1 A n 1 A m n 1 A m 1 A n
7 5 6 impbid φ n 1 A m 1 A n m 1 A n 1 A m
8 3 3 4 7 2 fsumcom2 φ n = 1 A m = 1 A n B = m = 1 A n = 1 A m B