Metamath Proof Explorer


Theorem fsumfldivdiaglem

Description: Lemma for fsumfldivdiag . (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypothesis fsumfldivdiag.1 φ A
Assertion fsumfldivdiaglem φ n 1 A m 1 A n m 1 A n 1 A m

Proof

Step Hyp Ref Expression
1 fsumfldivdiag.1 φ A
2 simprr φ n 1 A m 1 A n m 1 A n
3 1 adantr φ n 1 A m 1 A n A
4 simprl φ n 1 A m 1 A n n 1 A
5 fznnfl A n 1 A n n A
6 3 5 syl φ n 1 A m 1 A n n 1 A n n A
7 4 6 mpbid φ n 1 A m 1 A n n n A
8 7 simpld φ n 1 A m 1 A n n
9 3 8 nndivred φ n 1 A m 1 A n A n
10 fznnfl A n m 1 A n m m A n
11 9 10 syl φ n 1 A m 1 A n m 1 A n m m A n
12 2 11 mpbid φ n 1 A m 1 A n m m A n
13 12 simpld φ n 1 A m 1 A n m
14 13 nnred φ n 1 A m 1 A n m
15 12 simprd φ n 1 A m 1 A n m A n
16 3 recnd φ n 1 A m 1 A n A
17 16 mulid2d φ n 1 A m 1 A n 1 A = A
18 8 nnge1d φ n 1 A m 1 A n 1 n
19 1red φ n 1 A m 1 A n 1
20 8 nnred φ n 1 A m 1 A n n
21 0red φ n 1 A m 1 A n 0
22 8 13 nnmulcld φ n 1 A m 1 A n n m
23 22 nnred φ n 1 A m 1 A n n m
24 22 nngt0d φ n 1 A m 1 A n 0 < n m
25 8 nngt0d φ n 1 A m 1 A n 0 < n
26 lemuldiv2 m A n 0 < n n m A m A n
27 14 3 20 25 26 syl112anc φ n 1 A m 1 A n n m A m A n
28 15 27 mpbird φ n 1 A m 1 A n n m A
29 21 23 3 24 28 ltletrd φ n 1 A m 1 A n 0 < A
30 lemul1 1 n A 0 < A 1 n 1 A n A
31 19 20 3 29 30 syl112anc φ n 1 A m 1 A n 1 n 1 A n A
32 18 31 mpbid φ n 1 A m 1 A n 1 A n A
33 17 32 eqbrtrrd φ n 1 A m 1 A n A n A
34 ledivmul A A n 0 < n A n A A n A
35 3 3 20 25 34 syl112anc φ n 1 A m 1 A n A n A A n A
36 33 35 mpbird φ n 1 A m 1 A n A n A
37 14 9 3 15 36 letrd φ n 1 A m 1 A n m A
38 fznnfl A m 1 A m m A
39 3 38 syl φ n 1 A m 1 A n m 1 A m m A
40 13 37 39 mpbir2and φ n 1 A m 1 A n m 1 A
41 13 nngt0d φ n 1 A m 1 A n 0 < m
42 lemuldiv n A m 0 < m n m A n A m
43 20 3 14 41 42 syl112anc φ n 1 A m 1 A n n m A n A m
44 28 43 mpbid φ n 1 A m 1 A n n A m
45 3 13 nndivred φ n 1 A m 1 A n A m
46 fznnfl A m n 1 A m n n A m
47 45 46 syl φ n 1 A m 1 A n n 1 A m n n A m
48 8 44 47 mpbir2and φ n 1 A m 1 A n n 1 A m
49 40 48 jca φ n 1 A m 1 A n m 1 A n 1 A m
50 49 ex φ n 1 A m 1 A n m 1 A n 1 A m