Step |
Hyp |
Ref |
Expression |
1 |
|
fsumfldivdiag.1 |
|
2 |
|
simprr |
|
3 |
1
|
adantr |
|
4 |
|
simprl |
|
5 |
|
fznnfl |
|
6 |
3 5
|
syl |
|
7 |
4 6
|
mpbid |
|
8 |
7
|
simpld |
|
9 |
3 8
|
nndivred |
|
10 |
|
fznnfl |
|
11 |
9 10
|
syl |
|
12 |
2 11
|
mpbid |
|
13 |
12
|
simpld |
|
14 |
13
|
nnred |
|
15 |
12
|
simprd |
|
16 |
3
|
recnd |
|
17 |
16
|
mulid2d |
|
18 |
8
|
nnge1d |
|
19 |
|
1red |
|
20 |
8
|
nnred |
|
21 |
|
0red |
|
22 |
8 13
|
nnmulcld |
|
23 |
22
|
nnred |
|
24 |
22
|
nngt0d |
|
25 |
8
|
nngt0d |
|
26 |
|
lemuldiv2 |
|
27 |
14 3 20 25 26
|
syl112anc |
|
28 |
15 27
|
mpbird |
|
29 |
21 23 3 24 28
|
ltletrd |
|
30 |
|
lemul1 |
|
31 |
19 20 3 29 30
|
syl112anc |
|
32 |
18 31
|
mpbid |
|
33 |
17 32
|
eqbrtrrd |
|
34 |
|
ledivmul |
|
35 |
3 3 20 25 34
|
syl112anc |
|
36 |
33 35
|
mpbird |
|
37 |
14 9 3 15 36
|
letrd |
|
38 |
|
fznnfl |
|
39 |
3 38
|
syl |
|
40 |
13 37 39
|
mpbir2and |
|
41 |
13
|
nngt0d |
|
42 |
|
lemuldiv |
|
43 |
20 3 14 41 42
|
syl112anc |
|
44 |
28 43
|
mpbid |
|
45 |
3 13
|
nndivred |
|
46 |
|
fznnfl |
|
47 |
45 46
|
syl |
|
48 |
8 44 47
|
mpbir2and |
|
49 |
40 48
|
jca |
|
50 |
49
|
ex |
|