Metamath Proof Explorer


Theorem fsumge0

Description: If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumge0.1 φ A Fin
fsumge0.2 φ k A B
fsumge0.3 φ k A 0 B
Assertion fsumge0 φ 0 k A B

Proof

Step Hyp Ref Expression
1 fsumge0.1 φ A Fin
2 fsumge0.2 φ k A B
3 fsumge0.3 φ k A 0 B
4 rge0ssre 0 +∞
5 ax-resscn
6 4 5 sstri 0 +∞
7 6 a1i φ 0 +∞
8 ge0addcl x 0 +∞ y 0 +∞ x + y 0 +∞
9 8 adantl φ x 0 +∞ y 0 +∞ x + y 0 +∞
10 elrege0 B 0 +∞ B 0 B
11 2 3 10 sylanbrc φ k A B 0 +∞
12 0e0icopnf 0 0 +∞
13 12 a1i φ 0 0 +∞
14 7 9 1 11 13 fsumcllem φ k A B 0 +∞
15 elrege0 k A B 0 +∞ k A B 0 k A B
16 15 simprbi k A B 0 +∞ 0 k A B
17 14 16 syl φ 0 k A B