Metamath Proof Explorer


Theorem fsumge0cl

Description: The finite sum of nonnegative reals is a nonnegative real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fsumge0cl.a φ A Fin
fsumge0cl.b φ k A B 0 +∞
Assertion fsumge0cl φ k A B 0 +∞

Proof

Step Hyp Ref Expression
1 fsumge0cl.a φ A Fin
2 fsumge0cl.b φ k A B 0 +∞
3 0xr 0 *
4 3 a1i φ 0 *
5 pnfxr +∞ *
6 5 a1i φ +∞ *
7 rge0ssre 0 +∞
8 7 2 sselid φ k A B
9 1 8 fsumrecl φ k A B
10 9 rexrd φ k A B *
11 3 a1i φ k A 0 *
12 5 a1i φ k A +∞ *
13 icogelb 0 * +∞ * B 0 +∞ 0 B
14 11 12 2 13 syl3anc φ k A 0 B
15 1 8 14 fsumge0 φ 0 k A B
16 9 ltpnfd φ k A B < +∞
17 4 6 10 15 16 elicod φ k A B 0 +∞