Metamath Proof Explorer


Theorem fsumge1

Description: A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 4-Jun-2014)

Ref Expression
Hypotheses fsumge0.1 φ A Fin
fsumge0.2 φ k A B
fsumge0.3 φ k A 0 B
fsumge1.4 k = M B = C
fsumge1.5 φ M A
Assertion fsumge1 φ C k A B

Proof

Step Hyp Ref Expression
1 fsumge0.1 φ A Fin
2 fsumge0.2 φ k A B
3 fsumge0.3 φ k A 0 B
4 fsumge1.4 k = M B = C
5 fsumge1.5 φ M A
6 4 eleq1d k = M B C
7 2 recnd φ k A B
8 7 ralrimiva φ k A B
9 6 8 5 rspcdva φ C
10 4 sumsn M A C k M B = C
11 5 9 10 syl2anc φ k M B = C
12 5 snssd φ M A
13 1 2 3 12 fsumless φ k M B k A B
14 11 13 eqbrtrrd φ C k A B