Step |
Hyp |
Ref |
Expression |
1 |
|
fsumharmonic.a |
|
2 |
|
fsumharmonic.t |
|
3 |
|
fsumharmonic.r |
|
4 |
|
fsumharmonic.b |
|
5 |
|
fsumharmonic.c |
|
6 |
|
fsumharmonic.0 |
|
7 |
|
fsumharmonic.1 |
|
8 |
|
fsumharmonic.2 |
|
9 |
|
fzfid |
|
10 |
|
elfznn |
|
11 |
10
|
adantl |
|
12 |
11
|
nncnd |
|
13 |
11
|
nnne0d |
|
14 |
4 12 13
|
divcld |
|
15 |
9 14
|
fsumcl |
|
16 |
15
|
abscld |
|
17 |
4
|
abscld |
|
18 |
17 11
|
nndivred |
|
19 |
9 18
|
fsumrecl |
|
20 |
9 5
|
fsumrecl |
|
21 |
3
|
simpld |
|
22 |
2
|
simpld |
|
23 |
|
0red |
|
24 |
|
1red |
|
25 |
|
0lt1 |
|
26 |
25
|
a1i |
|
27 |
2
|
simprd |
|
28 |
23 24 22 26 27
|
ltletrd |
|
29 |
22 28
|
elrpd |
|
30 |
29
|
relogcld |
|
31 |
30 24
|
readdcld |
|
32 |
21 31
|
remulcld |
|
33 |
20 32
|
readdcld |
|
34 |
9 14
|
fsumabs |
|
35 |
4 12 13
|
absdivd |
|
36 |
11
|
nnrpd |
|
37 |
36
|
rprege0d |
|
38 |
|
absid |
|
39 |
37 38
|
syl |
|
40 |
39
|
oveq2d |
|
41 |
35 40
|
eqtrd |
|
42 |
41
|
sumeq2dv |
|
43 |
34 42
|
breqtrd |
|
44 |
1 29
|
rpdivcld |
|
45 |
44
|
rprege0d |
|
46 |
|
flge0nn0 |
|
47 |
45 46
|
syl |
|
48 |
47
|
nn0red |
|
49 |
48
|
ltp1d |
|
50 |
|
fzdisj |
|
51 |
49 50
|
syl |
|
52 |
|
nn0p1nn |
|
53 |
47 52
|
syl |
|
54 |
|
nnuz |
|
55 |
53 54
|
eleqtrdi |
|
56 |
44
|
rpred |
|
57 |
1
|
rpred |
|
58 |
22 28
|
jca |
|
59 |
1
|
rpregt0d |
|
60 |
|
lediv2 |
|
61 |
24 26 58 59 60
|
syl211anc |
|
62 |
27 61
|
mpbid |
|
63 |
57
|
recnd |
|
64 |
63
|
div1d |
|
65 |
62 64
|
breqtrd |
|
66 |
|
flword2 |
|
67 |
56 57 65 66
|
syl3anc |
|
68 |
|
fzsplit2 |
|
69 |
55 67 68
|
syl2anc |
|
70 |
18
|
recnd |
|
71 |
51 69 9 70
|
fsumsplit |
|
72 |
|
fzfid |
|
73 |
|
ssun1 |
|
74 |
73 69
|
sseqtrrid |
|
75 |
74
|
sselda |
|
76 |
75 18
|
syldan |
|
77 |
72 76
|
fsumrecl |
|
78 |
|
fzfid |
|
79 |
|
ssun2 |
|
80 |
79 69
|
sseqtrrid |
|
81 |
80
|
sselda |
|
82 |
81 18
|
syldan |
|
83 |
78 82
|
fsumrecl |
|
84 |
75 5
|
syldan |
|
85 |
72 84
|
fsumrecl |
|
86 |
|
fznnfl |
|
87 |
56 86
|
syl |
|
88 |
87
|
simplbda |
|
89 |
36
|
rpred |
|
90 |
57
|
adantr |
|
91 |
58
|
adantr |
|
92 |
|
lemuldiv2 |
|
93 |
89 90 91 92
|
syl3anc |
|
94 |
22
|
adantr |
|
95 |
94 90 36
|
lemuldivd |
|
96 |
93 95
|
bitr3d |
|
97 |
75 96
|
syldan |
|
98 |
88 97
|
mpbid |
|
99 |
7
|
ex |
|
100 |
75 99
|
syldan |
|
101 |
98 100
|
mpd |
|
102 |
75 4
|
syldan |
|
103 |
102
|
abscld |
|
104 |
75 10
|
syl |
|
105 |
104
|
nnrpd |
|
106 |
103 84 105
|
ledivmul2d |
|
107 |
101 106
|
mpbird |
|
108 |
72 76 84 107
|
fsumle |
|
109 |
9 5 6 74
|
fsumless |
|
110 |
77 85 20 108 109
|
letrd |
|
111 |
81 10
|
syl |
|
112 |
111
|
nnrecred |
|
113 |
78 112
|
fsumrecl |
|
114 |
21 113
|
remulcld |
|
115 |
21
|
adantr |
|
116 |
115
|
recnd |
|
117 |
111
|
nncnd |
|
118 |
111
|
nnne0d |
|
119 |
116 117 118
|
divrecd |
|
120 |
115 111
|
nndivred |
|
121 |
119 120
|
eqeltrrd |
|
122 |
81 17
|
syldan |
|
123 |
81 36
|
syldan |
|
124 |
|
noel |
|
125 |
|
elin |
|
126 |
51
|
eleq2d |
|
127 |
125 126
|
bitr3id |
|
128 |
124 127
|
mtbiri |
|
129 |
|
imnan |
|
130 |
128 129
|
sylibr |
|
131 |
130
|
con2d |
|
132 |
131
|
imp |
|
133 |
86
|
baibd |
|
134 |
56 10 133
|
syl2an |
|
135 |
134 96
|
bitrd |
|
136 |
81 135
|
syldan |
|
137 |
132 136
|
mtbid |
|
138 |
57
|
adantr |
|
139 |
138 111
|
nndivred |
|
140 |
22
|
adantr |
|
141 |
139 140
|
ltnled |
|
142 |
137 141
|
mpbird |
|
143 |
8
|
ex |
|
144 |
81 143
|
syldan |
|
145 |
142 144
|
mpd |
|
146 |
122 115 123 145
|
lediv1dd |
|
147 |
146 119
|
breqtrd |
|
148 |
78 82 121 147
|
fsumle |
|
149 |
21
|
recnd |
|
150 |
112
|
recnd |
|
151 |
78 149 150
|
fsummulc2 |
|
152 |
148 151
|
breqtrrd |
|
153 |
104
|
nnrecred |
|
154 |
72 153
|
fsumrecl |
|
155 |
154
|
recnd |
|
156 |
113
|
recnd |
|
157 |
11
|
nnrecred |
|
158 |
157
|
recnd |
|
159 |
51 69 9 158
|
fsumsplit |
|
160 |
155 156 159
|
mvrladdd |
|
161 |
9 157
|
fsumrecl |
|
162 |
161
|
adantr |
|
163 |
154
|
adantr |
|
164 |
162 163
|
resubcld |
|
165 |
|
0red |
|
166 |
31
|
adantr |
|
167 |
|
fzfid |
|
168 |
105
|
adantlr |
|
169 |
168
|
rpreccld |
|
170 |
169
|
rpred |
|
171 |
169
|
rpge0d |
|
172 |
1
|
adantr |
|
173 |
172
|
rpge0d |
|
174 |
|
simpr |
|
175 |
|
0p1e1 |
|
176 |
174 175
|
breqtrrdi |
|
177 |
57
|
adantr |
|
178 |
|
0z |
|
179 |
|
flbi |
|
180 |
177 178 179
|
sylancl |
|
181 |
173 176 180
|
mpbir2and |
|
182 |
181
|
oveq2d |
|
183 |
|
fz10 |
|
184 |
182 183
|
eqtrdi |
|
185 |
|
0ss |
|
186 |
184 185
|
eqsstrdi |
|
187 |
167 170 171 186
|
fsumless |
|
188 |
162 163
|
suble0d |
|
189 |
187 188
|
mpbird |
|
190 |
22 27
|
logge0d |
|
191 |
|
0le1 |
|
192 |
191
|
a1i |
|
193 |
30 24 190 192
|
addge0d |
|
194 |
193
|
adantr |
|
195 |
164 165 166 189 194
|
letrd |
|
196 |
|
harmonicubnd |
|
197 |
57 196
|
sylan |
|
198 |
|
harmoniclbnd |
|
199 |
44 198
|
syl |
|
200 |
199
|
adantr |
|
201 |
1
|
relogcld |
|
202 |
|
peano2re |
|
203 |
201 202
|
syl |
|
204 |
44
|
relogcld |
|
205 |
|
le2sub |
|
206 |
161 154 203 204 205
|
syl22anc |
|
207 |
206
|
adantr |
|
208 |
197 200 207
|
mp2and |
|
209 |
201
|
recnd |
|
210 |
24
|
recnd |
|
211 |
30
|
recnd |
|
212 |
209 210 211
|
pnncand |
|
213 |
1 29
|
relogdivd |
|
214 |
213
|
oveq2d |
|
215 |
|
ax-1cn |
|
216 |
|
addcom |
|
217 |
211 215 216
|
sylancl |
|
218 |
212 214 217
|
3eqtr4d |
|
219 |
218
|
adantr |
|
220 |
208 219
|
breqtrd |
|
221 |
195 220 57 24
|
ltlecasei |
|
222 |
160 221
|
eqbrtrrd |
|
223 |
|
lemul2a |
|
224 |
113 31 3 222 223
|
syl31anc |
|
225 |
83 114 32 152 224
|
letrd |
|
226 |
77 83 20 32 110 225
|
le2addd |
|
227 |
71 226
|
eqbrtrd |
|
228 |
16 19 33 43 227
|
letrd |
|