Metamath Proof Explorer


Theorem fsumim

Description: The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007) (Revised by Mario Carneiro, 25-Jul-2014)

Ref Expression
Hypotheses fsumre.1 φ A Fin
fsumre.2 φ k A B
Assertion fsumim φ k A B = k A B

Proof

Step Hyp Ref Expression
1 fsumre.1 φ A Fin
2 fsumre.2 φ k A B
3 imf :
4 ax-resscn
5 fss : :
6 3 4 5 mp2an :
7 imadd x y x + y = x + y
8 1 2 6 7 fsumrelem φ k A B = k A B