Step |
Hyp |
Ref |
Expression |
1 |
|
fsumiun.1 |
|
2 |
|
fsumiun.2 |
|
3 |
|
fsumiun.3 |
|
4 |
|
fsumiun.4 |
|
5 |
|
ssid |
|
6 |
|
sseq1 |
|
7 |
|
iuneq1 |
|
8 |
|
0iun |
|
9 |
7 8
|
eqtrdi |
|
10 |
9
|
sumeq1d |
|
11 |
|
sumeq1 |
|
12 |
10 11
|
eqeq12d |
|
13 |
6 12
|
imbi12d |
|
14 |
13
|
imbi2d |
|
15 |
|
sseq1 |
|
16 |
|
iuneq1 |
|
17 |
16
|
sumeq1d |
|
18 |
|
sumeq1 |
|
19 |
17 18
|
eqeq12d |
|
20 |
15 19
|
imbi12d |
|
21 |
20
|
imbi2d |
|
22 |
|
sseq1 |
|
23 |
|
iuneq1 |
|
24 |
23
|
sumeq1d |
|
25 |
|
sumeq1 |
|
26 |
24 25
|
eqeq12d |
|
27 |
22 26
|
imbi12d |
|
28 |
27
|
imbi2d |
|
29 |
|
sseq1 |
|
30 |
|
iuneq1 |
|
31 |
30
|
sumeq1d |
|
32 |
|
sumeq1 |
|
33 |
31 32
|
eqeq12d |
|
34 |
29 33
|
imbi12d |
|
35 |
34
|
imbi2d |
|
36 |
|
sum0 |
|
37 |
|
sum0 |
|
38 |
36 37
|
eqtr4i |
|
39 |
38
|
2a1i |
|
40 |
|
id |
|
41 |
40
|
unssad |
|
42 |
41
|
imim1i |
|
43 |
|
oveq1 |
|
44 |
|
nfcv |
|
45 |
|
nfcsb1v |
|
46 |
|
csbeq1a |
|
47 |
44 45 46
|
cbviun |
|
48 |
|
vex |
|
49 |
|
csbeq1 |
|
50 |
48 49
|
iunxsn |
|
51 |
47 50
|
eqtri |
|
52 |
51
|
ineq2i |
|
53 |
3
|
ad2antrr |
|
54 |
41
|
adantl |
|
55 |
|
simpr |
|
56 |
55
|
unssbd |
|
57 |
|
simplr |
|
58 |
|
disjsn |
|
59 |
57 58
|
sylibr |
|
60 |
|
disjiun |
|
61 |
53 54 56 59 60
|
syl13anc |
|
62 |
52 61
|
eqtr3id |
|
63 |
|
iunxun |
|
64 |
51
|
uneq2i |
|
65 |
63 64
|
eqtri |
|
66 |
65
|
a1i |
|
67 |
1
|
ad2antrr |
|
68 |
67 55
|
ssfid |
|
69 |
2
|
ralrimiva |
|
70 |
69
|
ad2antrr |
|
71 |
|
ssralv |
|
72 |
55 70 71
|
sylc |
|
73 |
|
iunfi |
|
74 |
68 72 73
|
syl2anc |
|
75 |
|
iunss1 |
|
76 |
75
|
adantl |
|
77 |
76
|
sselda |
|
78 |
|
eliun |
|
79 |
4
|
rexlimdvaa |
|
80 |
79
|
ad2antrr |
|
81 |
78 80
|
syl5bi |
|
82 |
81
|
imp |
|
83 |
77 82
|
syldan |
|
84 |
62 66 74 83
|
fsumsplit |
|
85 |
|
eqidd |
|
86 |
55
|
sselda |
|
87 |
4
|
anassrs |
|
88 |
2 87
|
fsumcl |
|
89 |
88
|
ralrimiva |
|
90 |
89
|
ad2antrr |
|
91 |
90
|
r19.21bi |
|
92 |
86 91
|
syldan |
|
93 |
59 85 68 92
|
fsumsplit |
|
94 |
|
nfcv |
|
95 |
|
nfcv |
|
96 |
45 95
|
nfsum |
|
97 |
46
|
sumeq1d |
|
98 |
94 96 97
|
cbvsumi |
|
99 |
48
|
snss |
|
100 |
56 99
|
sylibr |
|
101 |
|
nfcsb1v |
|
102 |
101 95
|
nfsum |
|
103 |
102
|
nfel1 |
|
104 |
|
csbeq1a |
|
105 |
104
|
sumeq1d |
|
106 |
105
|
eleq1d |
|
107 |
103 106
|
rspc |
|
108 |
100 90 107
|
sylc |
|
109 |
49
|
sumeq1d |
|
110 |
109
|
sumsn |
|
111 |
48 108 110
|
sylancr |
|
112 |
98 111
|
eqtrid |
|
113 |
112
|
oveq2d |
|
114 |
93 113
|
eqtrd |
|
115 |
84 114
|
eqeq12d |
|
116 |
43 115
|
syl5ibr |
|
117 |
116
|
ex |
|
118 |
117
|
a2d |
|
119 |
42 118
|
syl5 |
|
120 |
119
|
expcom |
|
121 |
120
|
a2d |
|
122 |
121
|
adantl |
|
123 |
14 21 28 35 39 122
|
findcard2s |
|
124 |
1 123
|
mpcom |
|
125 |
5 124
|
mpi |
|