| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumiun.1 |
|
| 2 |
|
fsumiun.2 |
|
| 3 |
|
fsumiun.3 |
|
| 4 |
|
fsumiun.4 |
|
| 5 |
|
ssid |
|
| 6 |
|
sseq1 |
|
| 7 |
|
iuneq1 |
|
| 8 |
|
0iun |
|
| 9 |
7 8
|
eqtrdi |
|
| 10 |
9
|
sumeq1d |
|
| 11 |
|
sumeq1 |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
6 12
|
imbi12d |
|
| 14 |
13
|
imbi2d |
|
| 15 |
|
sseq1 |
|
| 16 |
|
iuneq1 |
|
| 17 |
16
|
sumeq1d |
|
| 18 |
|
sumeq1 |
|
| 19 |
17 18
|
eqeq12d |
|
| 20 |
15 19
|
imbi12d |
|
| 21 |
20
|
imbi2d |
|
| 22 |
|
sseq1 |
|
| 23 |
|
iuneq1 |
|
| 24 |
23
|
sumeq1d |
|
| 25 |
|
sumeq1 |
|
| 26 |
24 25
|
eqeq12d |
|
| 27 |
22 26
|
imbi12d |
|
| 28 |
27
|
imbi2d |
|
| 29 |
|
sseq1 |
|
| 30 |
|
iuneq1 |
|
| 31 |
30
|
sumeq1d |
|
| 32 |
|
sumeq1 |
|
| 33 |
31 32
|
eqeq12d |
|
| 34 |
29 33
|
imbi12d |
|
| 35 |
34
|
imbi2d |
|
| 36 |
|
sum0 |
|
| 37 |
|
sum0 |
|
| 38 |
36 37
|
eqtr4i |
|
| 39 |
38
|
2a1i |
|
| 40 |
|
id |
|
| 41 |
40
|
unssad |
|
| 42 |
41
|
imim1i |
|
| 43 |
|
oveq1 |
|
| 44 |
|
nfcv |
|
| 45 |
|
nfcsb1v |
|
| 46 |
|
csbeq1a |
|
| 47 |
44 45 46
|
cbviun |
|
| 48 |
|
vex |
|
| 49 |
|
csbeq1 |
|
| 50 |
48 49
|
iunxsn |
|
| 51 |
47 50
|
eqtri |
|
| 52 |
51
|
ineq2i |
|
| 53 |
3
|
ad2antrr |
|
| 54 |
41
|
adantl |
|
| 55 |
|
simpr |
|
| 56 |
55
|
unssbd |
|
| 57 |
|
simplr |
|
| 58 |
|
disjsn |
|
| 59 |
57 58
|
sylibr |
|
| 60 |
|
disjiun |
|
| 61 |
53 54 56 59 60
|
syl13anc |
|
| 62 |
52 61
|
eqtr3id |
|
| 63 |
|
iunxun |
|
| 64 |
51
|
uneq2i |
|
| 65 |
63 64
|
eqtri |
|
| 66 |
65
|
a1i |
|
| 67 |
1
|
ad2antrr |
|
| 68 |
67 55
|
ssfid |
|
| 69 |
2
|
ralrimiva |
|
| 70 |
69
|
ad2antrr |
|
| 71 |
|
ssralv |
|
| 72 |
55 70 71
|
sylc |
|
| 73 |
|
iunfi |
|
| 74 |
68 72 73
|
syl2anc |
|
| 75 |
|
iunss1 |
|
| 76 |
75
|
adantl |
|
| 77 |
76
|
sselda |
|
| 78 |
|
eliun |
|
| 79 |
4
|
rexlimdvaa |
|
| 80 |
79
|
ad2antrr |
|
| 81 |
78 80
|
biimtrid |
|
| 82 |
81
|
imp |
|
| 83 |
77 82
|
syldan |
|
| 84 |
62 66 74 83
|
fsumsplit |
|
| 85 |
|
eqidd |
|
| 86 |
55
|
sselda |
|
| 87 |
4
|
anassrs |
|
| 88 |
2 87
|
fsumcl |
|
| 89 |
88
|
ralrimiva |
|
| 90 |
89
|
ad2antrr |
|
| 91 |
90
|
r19.21bi |
|
| 92 |
86 91
|
syldan |
|
| 93 |
59 85 68 92
|
fsumsplit |
|
| 94 |
46
|
sumeq1d |
|
| 95 |
|
nfcv |
|
| 96 |
|
nfcv |
|
| 97 |
45 96
|
nfsum |
|
| 98 |
94 95 97
|
cbvsum |
|
| 99 |
48
|
snss |
|
| 100 |
56 99
|
sylibr |
|
| 101 |
|
nfcsb1v |
|
| 102 |
101 96
|
nfsum |
|
| 103 |
102
|
nfel1 |
|
| 104 |
|
csbeq1a |
|
| 105 |
104
|
sumeq1d |
|
| 106 |
105
|
eleq1d |
|
| 107 |
103 106
|
rspc |
|
| 108 |
100 90 107
|
sylc |
|
| 109 |
49
|
sumeq1d |
|
| 110 |
109
|
sumsn |
|
| 111 |
48 108 110
|
sylancr |
|
| 112 |
98 111
|
eqtrid |
|
| 113 |
112
|
oveq2d |
|
| 114 |
93 113
|
eqtrd |
|
| 115 |
84 114
|
eqeq12d |
|
| 116 |
43 115
|
imbitrrid |
|
| 117 |
116
|
ex |
|
| 118 |
117
|
a2d |
|
| 119 |
42 118
|
syl5 |
|
| 120 |
119
|
expcom |
|
| 121 |
120
|
a2d |
|
| 122 |
121
|
adantl |
|
| 123 |
14 21 28 35 39 122
|
findcard2s |
|
| 124 |
1 123
|
mpcom |
|
| 125 |
5 124
|
mpi |
|