Metamath Proof Explorer


Theorem fsumiunle

Description: Upper bound for a sum of nonnegative terms over an indexed union. The inequality may be strict if the indexed union is non-disjoint, since in the right hand side, a summand may be counted several times. (Contributed by Thierry Arnoux, 1-Jan-2021)

Ref Expression
Hypotheses fsumiunle.1 φ A Fin
fsumiunle.2 φ x A B Fin
fsumiunle.3 φ x A k B C
fsumiunle.4 φ x A k B 0 C
Assertion fsumiunle φ k x A B C x A k B C

Proof

Step Hyp Ref Expression
1 fsumiunle.1 φ A Fin
2 fsumiunle.2 φ x A B Fin
3 fsumiunle.3 φ x A k B C
4 fsumiunle.4 φ x A k B 0 C
5 1 2 aciunf1 φ f f : x A B 1-1 x A x × B l x A B 2 nd f l = l
6 f1f1orn f : x A B 1-1 x A x × B f : x A B 1-1 onto ran f
7 6 anim1i f : x A B 1-1 x A x × B l x A B 2 nd f l = l f : x A B 1-1 onto ran f l x A B 2 nd f l = l
8 f1f f : x A B 1-1 x A x × B f : x A B x A x × B
9 8 frnd f : x A B 1-1 x A x × B ran f x A x × B
10 9 adantr f : x A B 1-1 x A x × B l x A B 2 nd f l = l ran f x A x × B
11 7 10 jca f : x A B 1-1 x A x × B l x A B 2 nd f l = l f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B
12 11 eximi f f : x A B 1-1 x A x × B l x A B 2 nd f l = l f f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B
13 5 12 syl φ f f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B
14 csbeq1a k = y C = y / k C
15 nfcv _ y C
16 nfcsb1v _ k y / k C
17 14 15 16 cbvsum k x A B C = y x A B y / k C
18 csbeq1 y = 2 nd z y / k C = 2 nd z / k C
19 snfi x Fin
20 xpfi x Fin B Fin x × B Fin
21 19 2 20 sylancr φ x A x × B Fin
22 21 ralrimiva φ x A x × B Fin
23 iunfi A Fin x A x × B Fin x A x × B Fin
24 1 22 23 syl2anc φ x A x × B Fin
25 24 adantr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B x A x × B Fin
26 simprr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B ran f x A x × B
27 25 26 ssfid φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B ran f Fin
28 simprl φ f : x A B 1-1 onto ran f ran f x A x × B f : x A B 1-1 onto ran f
29 f1ocnv f : x A B 1-1 onto ran f f -1 : ran f 1-1 onto x A B
30 28 29 syl φ f : x A B 1-1 onto ran f ran f x A x × B f -1 : ran f 1-1 onto x A B
31 30 adantrlr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B f -1 : ran f 1-1 onto x A B
32 nfv x φ
33 nfcv _ x f
34 nfiu1 _ x x A B
35 33 nfrn _ x ran f
36 33 34 35 nff1o x f : x A B 1-1 onto ran f
37 nfv x 2 nd f l = l
38 34 37 nfralw x l x A B 2 nd f l = l
39 36 38 nfan x f : x A B 1-1 onto ran f l x A B 2 nd f l = l
40 nfcv _ x ran f
41 nfiu1 _ x x A x × B
42 40 41 nfss x ran f x A x × B
43 39 42 nfan x f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B
44 32 43 nfan x φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B
45 nfv x z ran f
46 44 45 nfan x φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f
47 simpr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z f k = z
48 47 fveq2d φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z 2 nd f k = 2 nd z
49 simplr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z k x A B
50 simp-4r φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B
51 50 simpld φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B f : x A B 1-1 onto ran f l x A B 2 nd f l = l
52 51 simprd φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B l x A B 2 nd f l = l
53 52 ad2antrr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z l x A B 2 nd f l = l
54 2fveq3 l = k 2 nd f l = 2 nd f k
55 id l = k l = k
56 54 55 eqeq12d l = k 2 nd f l = l 2 nd f k = k
57 56 rspcva k x A B l x A B 2 nd f l = l 2 nd f k = k
58 49 53 57 syl2anc φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z 2 nd f k = k
59 48 58 eqtr3d φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z 2 nd z = k
60 51 simpld φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B f : x A B 1-1 onto ran f
61 60 ad2antrr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z f : x A B 1-1 onto ran f
62 f1ocnvfv1 f : x A B 1-1 onto ran f k x A B f -1 f k = k
63 61 49 62 syl2anc φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z f -1 f k = k
64 47 fveq2d φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z f -1 f k = f -1 z
65 59 63 64 3eqtr2rd φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z f -1 z = 2 nd z
66 f1ofn f : x A B 1-1 onto ran f f Fn x A B
67 60 66 syl φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B f Fn x A B
68 simpllr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B z ran f
69 fvelrnb f Fn x A B z ran f k x A B f k = z
70 69 biimpa f Fn x A B z ran f k x A B f k = z
71 67 68 70 syl2anc φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z
72 65 71 r19.29a φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B f -1 z = 2 nd z
73 26 sselda φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f z x A x × B
74 eliun z x A x × B x A z x × B
75 73 74 sylib φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B
76 46 72 75 r19.29af φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f f -1 z = 2 nd z
77 nfv k φ y x A B
78 nfcv _ k
79 16 78 nfel k y / k C
80 77 79 nfim k φ y x A B y / k C
81 eleq1w k = y k x A B y x A B
82 81 anbi2d k = y φ k x A B φ y x A B
83 14 eleq1d k = y C y / k C
84 82 83 imbi12d k = y φ k x A B C φ y x A B y / k C
85 nfcv _ x k
86 85 34 nfel x k x A B
87 32 86 nfan x φ k x A B
88 3 adantllr φ k x A B x A k B C
89 88 recnd φ k x A B x A k B C
90 eliun k x A B x A k B
91 90 biimpi k x A B x A k B
92 91 adantl φ k x A B x A k B
93 87 89 92 r19.29af φ k x A B C
94 80 84 93 chvarfv φ y x A B y / k C
95 94 adantlr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B y x A B y / k C
96 18 27 31 76 95 fsumf1o φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B y x A B y / k C = z ran f 2 nd z / k C
97 17 96 eqtrid φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B k x A B C = z ran f 2 nd z / k C
98 97 eqcomd φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f 2 nd z / k C = k x A B C
99 nfcv _ x z
100 99 41 nfel x z x A x × B
101 32 100 nfan x φ z x A x × B
102 xp2nd z x × B 2 nd z B
103 102 adantl φ z x A x × B x A z x × B 2 nd z B
104 3 ralrimiva φ x A k B C
105 104 adantlr φ z x A x × B x A k B C
106 105 adantr φ z x A x × B x A z x × B k B C
107 nfcsb1v _ k 2 nd z / k C
108 107 nfel1 k 2 nd z / k C
109 csbeq1a k = 2 nd z C = 2 nd z / k C
110 109 eleq1d k = 2 nd z C 2 nd z / k C
111 108 110 rspc 2 nd z B k B C 2 nd z / k C
112 111 imp 2 nd z B k B C 2 nd z / k C
113 103 106 112 syl2anc φ z x A x × B x A z x × B 2 nd z / k C
114 74 biimpi z x A x × B x A z x × B
115 114 adantl φ z x A x × B x A z x × B
116 101 113 115 r19.29af φ z x A x × B 2 nd z / k C
117 116 adantlr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z x A x × B 2 nd z / k C
118 xp1st z x × B 1 st z x
119 elsni 1 st z x 1 st z = x
120 118 119 syl z x × B 1 st z = x
121 120 102 jca z x × B 1 st z = x 2 nd z B
122 simplll φ z x A x × B x A 1 st z = x 2 nd z B φ
123 simplr φ z x A x × B x A 1 st z = x 2 nd z B x A
124 4 ralrimiva φ x A k B 0 C
125 122 123 124 syl2anc φ z x A x × B x A 1 st z = x 2 nd z B k B 0 C
126 121 125 sylan2 φ z x A x × B x A z x × B k B 0 C
127 nfcv _ k 0
128 nfcv _ k
129 127 128 107 nfbr k 0 2 nd z / k C
130 109 breq2d k = 2 nd z 0 C 0 2 nd z / k C
131 129 130 rspc 2 nd z B k B 0 C 0 2 nd z / k C
132 131 imp 2 nd z B k B 0 C 0 2 nd z / k C
133 103 126 132 syl2anc φ z x A x × B x A z x × B 0 2 nd z / k C
134 101 133 115 r19.29af φ z x A x × B 0 2 nd z / k C
135 134 adantlr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z x A x × B 0 2 nd z / k C
136 25 117 135 26 fsumless φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f 2 nd z / k C z x A x × B 2 nd z / k C
137 98 136 eqbrtrrd φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B k x A B C z x A x × B 2 nd z / k C
138 14 15 16 cbvsum k B C = y B y / k C
139 138 a1i φ k B C = y B y / k C
140 139 sumeq2sdv φ x A k B C = x A y B y / k C
141 vex x V
142 vex y V
143 141 142 op2ndd z = x y 2 nd z = y
144 143 eqcomd z = x y y = 2 nd z
145 144 csbeq1d z = x y y / k C = 2 nd z / k C
146 145 eqcomd z = x y 2 nd z / k C = y / k C
147 nfv k φ x A y B
148 16 nfel1 k y / k C
149 147 148 nfim k φ x A y B y / k C
150 eleq1w k = y k B y B
151 150 anbi2d k = y φ x A k B φ x A y B
152 151 83 imbi12d k = y φ x A k B C φ x A y B y / k C
153 3 recnd φ x A k B C
154 149 152 153 chvarfv φ x A y B y / k C
155 154 anasss φ x A y B y / k C
156 146 1 2 155 fsum2d φ x A y B y / k C = z x A x × B 2 nd z / k C
157 140 156 eqtrd φ x A k B C = z x A x × B 2 nd z / k C
158 157 adantr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B x A k B C = z x A x × B 2 nd z / k C
159 137 158 breqtrrd φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B k x A B C x A k B C
160 13 159 exlimddv φ k x A B C x A k B C