Step |
Hyp |
Ref |
Expression |
1 |
|
nn0p1nn |
|
2 |
1
|
adantr |
|
3 |
2
|
nncnd |
|
4 |
|
fzfid |
|
5 |
|
elfzelz |
|
6 |
5
|
zcnd |
|
7 |
|
simpl |
|
8 |
|
expcl |
|
9 |
6 7 8
|
syl2anr |
|
10 |
4 9
|
fsumcl |
|
11 |
2
|
nnne0d |
|
12 |
4 3 9
|
fsummulc2 |
|
13 |
|
bpolydif |
|
14 |
2 6 13
|
syl2an |
|
15 |
|
nn0cn |
|
16 |
15
|
ad2antrr |
|
17 |
|
ax-1cn |
|
18 |
|
pncan |
|
19 |
16 17 18
|
sylancl |
|
20 |
19
|
oveq2d |
|
21 |
20
|
oveq2d |
|
22 |
14 21
|
eqtrd |
|
23 |
22
|
sumeq2dv |
|
24 |
|
oveq2 |
|
25 |
|
oveq2 |
|
26 |
|
oveq2 |
|
27 |
|
oveq2 |
|
28 |
|
nn0z |
|
29 |
28
|
adantl |
|
30 |
|
peano2nn0 |
|
31 |
30
|
adantl |
|
32 |
|
nn0uz |
|
33 |
31 32
|
eleqtrdi |
|
34 |
|
peano2nn0 |
|
35 |
34
|
ad2antrr |
|
36 |
|
elfznn0 |
|
37 |
36
|
adantl |
|
38 |
37
|
nn0cnd |
|
39 |
|
bpolycl |
|
40 |
35 38 39
|
syl2anc |
|
41 |
24 25 26 27 29 33 40
|
telfsum2 |
|
42 |
12 23 41
|
3eqtr2d |
|
43 |
3 10 11 42
|
mvllmuld |
|