Metamath Proof Explorer


Theorem fsumkthpow

Description: A closed-form expression for the sum of K -th powers. (Contributed by Scott Fenton, 16-May-2014) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion fsumkthpow K 0 M 0 n = 0 M n K = K + 1 BernPoly M + 1 K + 1 BernPoly 0 K + 1

Proof

Step Hyp Ref Expression
1 nn0p1nn K 0 K + 1
2 1 adantr K 0 M 0 K + 1
3 2 nncnd K 0 M 0 K + 1
4 fzfid K 0 M 0 0 M Fin
5 elfzelz n 0 M n
6 5 zcnd n 0 M n
7 simpl K 0 M 0 K 0
8 expcl n K 0 n K
9 6 7 8 syl2anr K 0 M 0 n 0 M n K
10 4 9 fsumcl K 0 M 0 n = 0 M n K
11 2 nnne0d K 0 M 0 K + 1 0
12 4 3 9 fsummulc2 K 0 M 0 K + 1 n = 0 M n K = n = 0 M K + 1 n K
13 bpolydif K + 1 n K + 1 BernPoly n + 1 K + 1 BernPoly n = K + 1 n K + 1 - 1
14 2 6 13 syl2an K 0 M 0 n 0 M K + 1 BernPoly n + 1 K + 1 BernPoly n = K + 1 n K + 1 - 1
15 nn0cn K 0 K
16 15 ad2antrr K 0 M 0 n 0 M K
17 ax-1cn 1
18 pncan K 1 K + 1 - 1 = K
19 16 17 18 sylancl K 0 M 0 n 0 M K + 1 - 1 = K
20 19 oveq2d K 0 M 0 n 0 M n K + 1 - 1 = n K
21 20 oveq2d K 0 M 0 n 0 M K + 1 n K + 1 - 1 = K + 1 n K
22 14 21 eqtrd K 0 M 0 n 0 M K + 1 BernPoly n + 1 K + 1 BernPoly n = K + 1 n K
23 22 sumeq2dv K 0 M 0 n = 0 M K + 1 BernPoly n + 1 K + 1 BernPoly n = n = 0 M K + 1 n K
24 oveq2 k = n K + 1 BernPoly k = K + 1 BernPoly n
25 oveq2 k = n + 1 K + 1 BernPoly k = K + 1 BernPoly n + 1
26 oveq2 k = 0 K + 1 BernPoly k = K + 1 BernPoly 0
27 oveq2 k = M + 1 K + 1 BernPoly k = K + 1 BernPoly M + 1
28 nn0z M 0 M
29 28 adantl K 0 M 0 M
30 peano2nn0 M 0 M + 1 0
31 30 adantl K 0 M 0 M + 1 0
32 nn0uz 0 = 0
33 31 32 eleqtrdi K 0 M 0 M + 1 0
34 peano2nn0 K 0 K + 1 0
35 34 ad2antrr K 0 M 0 k 0 M + 1 K + 1 0
36 elfznn0 k 0 M + 1 k 0
37 36 adantl K 0 M 0 k 0 M + 1 k 0
38 37 nn0cnd K 0 M 0 k 0 M + 1 k
39 bpolycl K + 1 0 k K + 1 BernPoly k
40 35 38 39 syl2anc K 0 M 0 k 0 M + 1 K + 1 BernPoly k
41 24 25 26 27 29 33 40 telfsum2 K 0 M 0 n = 0 M K + 1 BernPoly n + 1 K + 1 BernPoly n = K + 1 BernPoly M + 1 K + 1 BernPoly 0
42 12 23 41 3eqtr2d K 0 M 0 K + 1 n = 0 M n K = K + 1 BernPoly M + 1 K + 1 BernPoly 0
43 3 10 11 42 mvllmuld K 0 M 0 n = 0 M n K = K + 1 BernPoly M + 1 K + 1 BernPoly 0 K + 1