Metamath Proof Explorer


Theorem fsumle

Description: If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005) (Proof shortened by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumle.1 φ A Fin
fsumle.2 φ k A B
fsumle.3 φ k A C
fsumle.4 φ k A B C
Assertion fsumle φ k A B k A C

Proof

Step Hyp Ref Expression
1 fsumle.1 φ A Fin
2 fsumle.2 φ k A B
3 fsumle.3 φ k A C
4 fsumle.4 φ k A B C
5 3 2 resubcld φ k A C B
6 3 2 subge0d φ k A 0 C B B C
7 4 6 mpbird φ k A 0 C B
8 1 5 7 fsumge0 φ 0 k A C B
9 3 recnd φ k A C
10 2 recnd φ k A B
11 1 9 10 fsumsub φ k A C B = k A C k A B
12 8 11 breqtrd φ 0 k A C k A B
13 1 3 fsumrecl φ k A C
14 1 2 fsumrecl φ k A B
15 13 14 subge0d φ 0 k A C k A B k A B k A C
16 12 15 mpbid φ k A B k A C