Step |
Hyp |
Ref |
Expression |
1 |
|
fsumge0.1 |
|
2 |
|
fsumge0.2 |
|
3 |
|
fsumge0.3 |
|
4 |
|
fsumless.4 |
|
5 |
|
difss |
|
6 |
|
ssfi |
|
7 |
1 5 6
|
sylancl |
|
8 |
|
eldifi |
|
9 |
8 2
|
sylan2 |
|
10 |
8 3
|
sylan2 |
|
11 |
7 9 10
|
fsumge0 |
|
12 |
1 4
|
ssfid |
|
13 |
4
|
sselda |
|
14 |
13 2
|
syldan |
|
15 |
12 14
|
fsumrecl |
|
16 |
7 9
|
fsumrecl |
|
17 |
15 16
|
addge01d |
|
18 |
11 17
|
mpbid |
|
19 |
|
disjdif |
|
20 |
19
|
a1i |
|
21 |
|
undif |
|
22 |
4 21
|
sylib |
|
23 |
22
|
eqcomd |
|
24 |
2
|
recnd |
|
25 |
20 23 1 24
|
fsumsplit |
|
26 |
18 25
|
breqtrrd |
|