Metamath Proof Explorer


Theorem fsumless

Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005) (Proof shortened by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumge0.1 φ A Fin
fsumge0.2 φ k A B
fsumge0.3 φ k A 0 B
fsumless.4 φ C A
Assertion fsumless φ k C B k A B

Proof

Step Hyp Ref Expression
1 fsumge0.1 φ A Fin
2 fsumge0.2 φ k A B
3 fsumge0.3 φ k A 0 B
4 fsumless.4 φ C A
5 difss A C A
6 ssfi A Fin A C A A C Fin
7 1 5 6 sylancl φ A C Fin
8 eldifi k A C k A
9 8 2 sylan2 φ k A C B
10 8 3 sylan2 φ k A C 0 B
11 7 9 10 fsumge0 φ 0 k A C B
12 1 4 ssfid φ C Fin
13 4 sselda φ k C k A
14 13 2 syldan φ k C B
15 12 14 fsumrecl φ k C B
16 7 9 fsumrecl φ k A C B
17 15 16 addge01d φ 0 k A C B k C B k C B + k A C B
18 11 17 mpbid φ k C B k C B + k A C B
19 disjdif C A C =
20 19 a1i φ C A C =
21 undif C A C A C = A
22 4 21 sylib φ C A C = A
23 22 eqcomd φ A = C A C
24 2 recnd φ k A B
25 20 23 1 24 fsumsplit φ k A B = k C B + k A C B
26 18 25 breqtrrd φ k C B k A B