Metamath Proof Explorer


Theorem fsumlessf

Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses fsumlessf.k k φ
fsumge0.a φ A Fin
fsumge0.b φ k A B
fsumge0.l φ k A 0 B
fsumless.c φ C A
Assertion fsumlessf φ k C B k A B

Proof

Step Hyp Ref Expression
1 fsumlessf.k k φ
2 fsumge0.a φ A Fin
3 fsumge0.b φ k A B
4 fsumge0.l φ k A 0 B
5 fsumless.c φ C A
6 nfv k j A
7 1 6 nfan k φ j A
8 nfcsb1v _ k j / k B
9 8 nfel1 k j / k B
10 7 9 nfim k φ j A j / k B
11 eleq1w k = j k A j A
12 11 anbi2d k = j φ k A φ j A
13 csbeq1a k = j B = j / k B
14 13 eleq1d k = j B j / k B
15 12 14 imbi12d k = j φ k A B φ j A j / k B
16 10 15 3 chvarfv φ j A j / k B
17 nfcv _ k 0
18 nfcv _ k
19 17 18 8 nfbr k 0 j / k B
20 7 19 nfim k φ j A 0 j / k B
21 13 breq2d k = j 0 B 0 j / k B
22 12 21 imbi12d k = j φ k A 0 B φ j A 0 j / k B
23 20 22 4 chvarfv φ j A 0 j / k B
24 2 16 23 5 fsumless φ j C j / k B j A j / k B
25 nfcv _ j C
26 nfcv _ k C
27 nfcv _ j B
28 13 25 26 27 8 cbvsum k C B = j C j / k B
29 nfcv _ j A
30 nfcv _ k A
31 13 29 30 27 8 cbvsum k A B = j A j / k B
32 28 31 breq12i k C B k A B j C j / k B j A j / k B
33 24 32 sylibr φ k C B k A B