Step |
Hyp |
Ref |
Expression |
1 |
|
fsumm1.1 |
|
2 |
|
fsumm1.2 |
|
3 |
|
fsumm1.3 |
|
4 |
|
eluzelz |
|
5 |
1 4
|
syl |
|
6 |
|
fzsn |
|
7 |
5 6
|
syl |
|
8 |
7
|
ineq2d |
|
9 |
5
|
zred |
|
10 |
9
|
ltm1d |
|
11 |
|
fzdisj |
|
12 |
10 11
|
syl |
|
13 |
8 12
|
eqtr3d |
|
14 |
|
eluzel2 |
|
15 |
1 14
|
syl |
|
16 |
|
peano2zm |
|
17 |
15 16
|
syl |
|
18 |
15
|
zcnd |
|
19 |
|
ax-1cn |
|
20 |
|
npcan |
|
21 |
18 19 20
|
sylancl |
|
22 |
21
|
fveq2d |
|
23 |
1 22
|
eleqtrrd |
|
24 |
|
eluzp1m1 |
|
25 |
17 23 24
|
syl2anc |
|
26 |
|
fzsuc2 |
|
27 |
15 25 26
|
syl2anc |
|
28 |
5
|
zcnd |
|
29 |
|
npcan |
|
30 |
28 19 29
|
sylancl |
|
31 |
30
|
oveq2d |
|
32 |
27 31
|
eqtr3d |
|
33 |
30
|
sneqd |
|
34 |
33
|
uneq2d |
|
35 |
32 34
|
eqtr3d |
|
36 |
|
fzfid |
|
37 |
13 35 36 2
|
fsumsplit |
|
38 |
3
|
eleq1d |
|
39 |
2
|
ralrimiva |
|
40 |
|
eluzfz2 |
|
41 |
1 40
|
syl |
|
42 |
38 39 41
|
rspcdva |
|
43 |
3
|
sumsn |
|
44 |
1 42 43
|
syl2anc |
|
45 |
44
|
oveq2d |
|
46 |
37 45
|
eqtrd |
|