| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumm1.1 |
|
| 2 |
|
fsumm1.2 |
|
| 3 |
|
fsumm1.3 |
|
| 4 |
|
eluzelz |
|
| 5 |
1 4
|
syl |
|
| 6 |
|
fzsn |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
ineq2d |
|
| 9 |
5
|
zred |
|
| 10 |
9
|
ltm1d |
|
| 11 |
|
fzdisj |
|
| 12 |
10 11
|
syl |
|
| 13 |
8 12
|
eqtr3d |
|
| 14 |
|
eluzel2 |
|
| 15 |
1 14
|
syl |
|
| 16 |
|
peano2zm |
|
| 17 |
15 16
|
syl |
|
| 18 |
15
|
zcnd |
|
| 19 |
|
ax-1cn |
|
| 20 |
|
npcan |
|
| 21 |
18 19 20
|
sylancl |
|
| 22 |
21
|
fveq2d |
|
| 23 |
1 22
|
eleqtrrd |
|
| 24 |
|
eluzp1m1 |
|
| 25 |
17 23 24
|
syl2anc |
|
| 26 |
|
fzsuc2 |
|
| 27 |
15 25 26
|
syl2anc |
|
| 28 |
5
|
zcnd |
|
| 29 |
|
npcan |
|
| 30 |
28 19 29
|
sylancl |
|
| 31 |
30
|
oveq2d |
|
| 32 |
27 31
|
eqtr3d |
|
| 33 |
30
|
sneqd |
|
| 34 |
33
|
uneq2d |
|
| 35 |
32 34
|
eqtr3d |
|
| 36 |
|
fzfid |
|
| 37 |
13 35 36 2
|
fsumsplit |
|
| 38 |
3
|
eleq1d |
|
| 39 |
2
|
ralrimiva |
|
| 40 |
|
eluzfz2 |
|
| 41 |
1 40
|
syl |
|
| 42 |
38 39 41
|
rspcdva |
|
| 43 |
3
|
sumsn |
|
| 44 |
1 42 43
|
syl2anc |
|
| 45 |
44
|
oveq2d |
|
| 46 |
37 45
|
eqtrd |
|