Metamath Proof Explorer


Theorem fsummsnunz

Description: A finite sum all of whose summands are integers is itself an integer (case where the summation set is the union of a finite set and a singleton). (Contributed by Alexander van der Vekens, 1-Sep-2018) (Revised by AV, 17-Dec-2021)

Ref Expression
Assertion fsummsnunz A Fin k A Z B k A Z B

Proof

Step Hyp Ref Expression
1 nfcv _ x B
2 nfcsb1v _ k x / k B
3 csbeq1a k = x B = x / k B
4 1 2 3 cbvsumi k A Z B = x A Z x / k B
5 snfi Z Fin
6 5 a1i A Fin k A Z B Z Fin
7 unfi A Fin Z Fin A Z Fin
8 6 7 syldan A Fin k A Z B A Z Fin
9 rspcsbela x A Z k A Z B x / k B
10 9 expcom k A Z B x A Z x / k B
11 10 adantl A Fin k A Z B x A Z x / k B
12 11 imp A Fin k A Z B x A Z x / k B
13 8 12 fsumzcl A Fin k A Z B x A Z x / k B
14 4 13 eqeltrid A Fin k A Z B k A Z B