Metamath Proof Explorer


Theorem fsummulc1

Description: A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsummulc2.1 φ A Fin
fsummulc2.2 φ C
fsummulc2.3 φ k A B
Assertion fsummulc1 φ k A B C = k A B C

Proof

Step Hyp Ref Expression
1 fsummulc2.1 φ A Fin
2 fsummulc2.2 φ C
3 fsummulc2.3 φ k A B
4 1 2 3 fsummulc2 φ C k A B = k A C B
5 1 3 fsumcl φ k A B
6 5 2 mulcomd φ k A B C = C k A B
7 2 adantr φ k A C
8 3 7 mulcomd φ k A B C = C B
9 8 sumeq2dv φ k A B C = k A C B
10 4 6 9 3eqtr4d φ k A B C = k A B C