Metamath Proof Explorer


Theorem fsummulc1f

Description: Closure of a finite sum of complex numbers A ( k ) . A version of fsummulc1 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsummulc1f.ph k φ
fsummulclf.a φ A Fin
fsummulclf.c φ C
fsummulclf.b φ k A B
Assertion fsummulc1f φ k A B C = k A B C

Proof

Step Hyp Ref Expression
1 fsummulc1f.ph k φ
2 fsummulclf.a φ A Fin
3 fsummulclf.c φ C
4 fsummulclf.b φ k A B
5 csbeq1a k = j B = j / k B
6 nfcv _ j B
7 nfcsb1v _ k j / k B
8 5 6 7 cbvsum k A B = j A j / k B
9 8 oveq1i k A B C = j A j / k B C
10 9 a1i φ k A B C = j A j / k B C
11 nfv k j A
12 1 11 nfan k φ j A
13 7 nfel1 k j / k B
14 12 13 nfim k φ j A j / k B
15 eleq1w k = j k A j A
16 15 anbi2d k = j φ k A φ j A
17 5 eleq1d k = j B j / k B
18 16 17 imbi12d k = j φ k A B φ j A j / k B
19 14 18 4 chvarfv φ j A j / k B
20 2 3 19 fsummulc1 φ j A j / k B C = j A j / k B C
21 eqcom k = j j = k
22 21 imbi1i k = j B = j / k B j = k B = j / k B
23 eqcom B = j / k B j / k B = B
24 23 imbi2i j = k B = j / k B j = k j / k B = B
25 22 24 bitri k = j B = j / k B j = k j / k B = B
26 5 25 mpbi j = k j / k B = B
27 26 oveq1d j = k j / k B C = B C
28 nfcv _ k ×
29 nfcv _ k C
30 7 28 29 nfov _ k j / k B C
31 nfcv _ j B C
32 27 30 31 cbvsum j A j / k B C = k A B C
33 32 a1i φ j A j / k B C = k A B C
34 10 20 33 3eqtrd φ k A B C = k A B C