Step |
Hyp |
Ref |
Expression |
1 |
|
fsummulc2.1 |
|
2 |
|
fsummulc2.2 |
|
3 |
|
fsummulc2.3 |
|
4 |
2
|
mul01d |
|
5 |
|
sumeq1 |
|
6 |
|
sum0 |
|
7 |
5 6
|
eqtrdi |
|
8 |
7
|
oveq2d |
|
9 |
|
sumeq1 |
|
10 |
|
sum0 |
|
11 |
9 10
|
eqtrdi |
|
12 |
8 11
|
eqeq12d |
|
13 |
4 12
|
syl5ibrcom |
|
14 |
|
addcl |
|
15 |
14
|
adantl |
|
16 |
2
|
adantr |
|
17 |
|
adddi |
|
18 |
17
|
3expb |
|
19 |
16 18
|
sylan |
|
20 |
|
simprl |
|
21 |
|
nnuz |
|
22 |
20 21
|
eleqtrdi |
|
23 |
3
|
fmpttd |
|
24 |
23
|
ad2antrr |
|
25 |
|
simprr |
|
26 |
25
|
adantr |
|
27 |
|
f1of |
|
28 |
26 27
|
syl |
|
29 |
|
fco |
|
30 |
24 28 29
|
syl2anc |
|
31 |
|
simpr |
|
32 |
30 31
|
ffvelrnd |
|
33 |
28 31
|
ffvelrnd |
|
34 |
|
simpr |
|
35 |
2
|
adantr |
|
36 |
35 3
|
mulcld |
|
37 |
|
eqid |
|
38 |
37
|
fvmpt2 |
|
39 |
34 36 38
|
syl2anc |
|
40 |
|
eqid |
|
41 |
40
|
fvmpt2 |
|
42 |
34 3 41
|
syl2anc |
|
43 |
42
|
oveq2d |
|
44 |
39 43
|
eqtr4d |
|
45 |
44
|
ralrimiva |
|
46 |
45
|
ad2antrr |
|
47 |
|
nffvmpt1 |
|
48 |
|
nfcv |
|
49 |
|
nfcv |
|
50 |
|
nffvmpt1 |
|
51 |
48 49 50
|
nfov |
|
52 |
47 51
|
nfeq |
|
53 |
|
fveq2 |
|
54 |
|
fveq2 |
|
55 |
54
|
oveq2d |
|
56 |
53 55
|
eqeq12d |
|
57 |
52 56
|
rspc |
|
58 |
33 46 57
|
sylc |
|
59 |
27
|
ad2antll |
|
60 |
|
fvco3 |
|
61 |
59 60
|
sylan |
|
62 |
|
fvco3 |
|
63 |
59 62
|
sylan |
|
64 |
63
|
oveq2d |
|
65 |
58 61 64
|
3eqtr4d |
|
66 |
15 19 22 32 65
|
seqdistr |
|
67 |
|
fveq2 |
|
68 |
36
|
fmpttd |
|
69 |
68
|
adantr |
|
70 |
69
|
ffvelrnda |
|
71 |
67 20 25 70 61
|
fsum |
|
72 |
|
fveq2 |
|
73 |
23
|
adantr |
|
74 |
73
|
ffvelrnda |
|
75 |
72 20 25 74 63
|
fsum |
|
76 |
75
|
oveq2d |
|
77 |
66 71 76
|
3eqtr4rd |
|
78 |
|
sumfc |
|
79 |
78
|
oveq2i |
|
80 |
|
sumfc |
|
81 |
77 79 80
|
3eqtr3g |
|
82 |
81
|
expr |
|
83 |
82
|
exlimdv |
|
84 |
83
|
expimpd |
|
85 |
|
fz1f1o |
|
86 |
1 85
|
syl |
|
87 |
13 84 86
|
mpjaod |
|