Metamath Proof Explorer


Theorem fsumneg

Description: Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumneg.1 φ A Fin
fsumneg.2 φ k A B
Assertion fsumneg φ k A B = k A B

Proof

Step Hyp Ref Expression
1 fsumneg.1 φ A Fin
2 fsumneg.2 φ k A B
3 neg1cn 1
4 3 a1i φ 1
5 1 4 2 fsummulc2 φ -1 k A B = k A -1 B
6 1 2 fsumcl φ k A B
7 6 mulm1d φ -1 k A B = k A B
8 2 mulm1d φ k A -1 B = B
9 8 sumeq2dv φ k A -1 B = k A B
10 5 7 9 3eqtr3rd φ k A B = k A B