Metamath Proof Explorer


Theorem fsumnn0cl

Description: Closure of a finite sum of nonnegative integers. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses fsumcl.1 φ A Fin
fsumnn0cl.2 φ k A B 0
Assertion fsumnn0cl φ k A B 0

Proof

Step Hyp Ref Expression
1 fsumcl.1 φ A Fin
2 fsumnn0cl.2 φ k A B 0
3 nn0sscn 0
4 3 a1i φ 0
5 nn0addcl x 0 y 0 x + y 0
6 5 adantl φ x 0 y 0 x + y 0
7 0nn0 0 0
8 7 a1i φ 0 0
9 4 6 1 2 8 fsumcllem φ k A B 0