Step |
Hyp |
Ref |
Expression |
1 |
|
fsumnncl.an0 |
|
2 |
|
fsumnncl.afi |
|
3 |
|
fsumnncl.b |
|
4 |
3
|
nnnn0d |
|
5 |
2 4
|
fsumnn0cl |
|
6 |
|
n0 |
|
7 |
1 6
|
sylib |
|
8 |
|
0red |
|
9 |
|
nfv |
|
10 |
|
nfcsb1v |
|
11 |
10
|
nfel1 |
|
12 |
9 11
|
nfim |
|
13 |
|
eleq1w |
|
14 |
13
|
anbi2d |
|
15 |
|
csbeq1a |
|
16 |
15
|
eleq1d |
|
17 |
14 16
|
imbi12d |
|
18 |
12 17 3
|
chvarfv |
|
19 |
18
|
nnred |
|
20 |
8 19
|
readdcld |
|
21 |
|
diffi |
|
22 |
2 21
|
syl |
|
23 |
|
eldifi |
|
24 |
23
|
adantl |
|
25 |
24 4
|
syldan |
|
26 |
22 25
|
fsumnn0cl |
|
27 |
26
|
nn0red |
|
28 |
27
|
adantr |
|
29 |
28 19
|
readdcld |
|
30 |
18
|
nnrpd |
|
31 |
8 30
|
ltaddrpd |
|
32 |
26
|
nn0ge0d |
|
33 |
32
|
adantr |
|
34 |
8 28 19 33
|
leadd1dd |
|
35 |
8 20 29 31 34
|
ltletrd |
|
36 |
|
difsnid |
|
37 |
36
|
adantl |
|
38 |
37
|
eqcomd |
|
39 |
38
|
sumeq1d |
|
40 |
22
|
adantr |
|
41 |
|
simpr |
|
42 |
|
neldifsnd |
|
43 |
|
simpl |
|
44 |
43 24 3
|
syl2anc |
|
45 |
44
|
nncnd |
|
46 |
45
|
adantlr |
|
47 |
|
nnsscn |
|
48 |
47
|
a1i |
|
49 |
48 18
|
sseldd |
|
50 |
9 10 40 41 42 46 15 49
|
fsumsplitsn |
|
51 |
39 50
|
eqtr2d |
|
52 |
35 51
|
breqtrd |
|
53 |
52
|
ex |
|
54 |
53
|
exlimdv |
|
55 |
7 54
|
mpd |
|
56 |
5 55
|
jca |
|
57 |
|
elnnnn0b |
|
58 |
56 57
|
sylibr |
|