Metamath Proof Explorer


Theorem fsumnncl

Description: Closure of a nonempty, finite sum of positive integers. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsumnncl.an0 φ A
fsumnncl.afi φ A Fin
fsumnncl.b φ k A B
Assertion fsumnncl φ k A B

Proof

Step Hyp Ref Expression
1 fsumnncl.an0 φ A
2 fsumnncl.afi φ A Fin
3 fsumnncl.b φ k A B
4 3 nnnn0d φ k A B 0
5 2 4 fsumnn0cl φ k A B 0
6 n0 A j j A
7 1 6 sylib φ j j A
8 0red φ j A 0
9 nfv k φ j A
10 nfcsb1v _ k j / k B
11 10 nfel1 k j / k B
12 9 11 nfim k φ j A j / k B
13 eleq1w k = j k A j A
14 13 anbi2d k = j φ k A φ j A
15 csbeq1a k = j B = j / k B
16 15 eleq1d k = j B j / k B
17 14 16 imbi12d k = j φ k A B φ j A j / k B
18 12 17 3 chvarfv φ j A j / k B
19 18 nnred φ j A j / k B
20 8 19 readdcld φ j A 0 + j / k B
21 diffi A Fin A j Fin
22 2 21 syl φ A j Fin
23 eldifi k A j k A
24 23 adantl φ k A j k A
25 24 4 syldan φ k A j B 0
26 22 25 fsumnn0cl φ k A j B 0
27 26 nn0red φ k A j B
28 27 adantr φ j A k A j B
29 28 19 readdcld φ j A k A j B + j / k B
30 18 nnrpd φ j A j / k B +
31 8 30 ltaddrpd φ j A 0 < 0 + j / k B
32 26 nn0ge0d φ 0 k A j B
33 32 adantr φ j A 0 k A j B
34 8 28 19 33 leadd1dd φ j A 0 + j / k B k A j B + j / k B
35 8 20 29 31 34 ltletrd φ j A 0 < k A j B + j / k B
36 difsnid j A A j j = A
37 36 adantl φ j A A j j = A
38 37 eqcomd φ j A A = A j j
39 38 sumeq1d φ j A k A B = k A j j B
40 22 adantr φ j A A j Fin
41 simpr φ j A j A
42 neldifsnd φ j A ¬ j A j
43 simpl φ k A j φ
44 43 24 3 syl2anc φ k A j B
45 44 nncnd φ k A j B
46 45 adantlr φ j A k A j B
47 nnsscn
48 47 a1i φ j A
49 48 18 sseldd φ j A j / k B
50 9 10 40 41 42 46 15 49 fsumsplitsn φ j A k A j j B = k A j B + j / k B
51 39 50 eqtr2d φ j A k A j B + j / k B = k A B
52 35 51 breqtrd φ j A 0 < k A B
53 52 ex φ j A 0 < k A B
54 53 exlimdv φ j j A 0 < k A B
55 7 54 mpd φ 0 < k A B
56 5 55 jca φ k A B 0 0 < k A B
57 elnnnn0b k A B k A B 0 0 < k A B
58 56 57 sylibr φ k A B