| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumo1.1 |  | 
						
							| 2 |  | fsumo1.2 |  | 
						
							| 3 |  | fsumo1.3 |  | 
						
							| 4 |  | fsumo1.4 |  | 
						
							| 5 |  | ssid |  | 
						
							| 6 |  | sseq1 |  | 
						
							| 7 |  | sumeq1 |  | 
						
							| 8 |  | sum0 |  | 
						
							| 9 | 7 8 | eqtrdi |  | 
						
							| 10 | 9 | mpteq2dv |  | 
						
							| 11 | 10 | eleq1d |  | 
						
							| 12 | 6 11 | imbi12d |  | 
						
							| 13 | 12 | imbi2d |  | 
						
							| 14 |  | sseq1 |  | 
						
							| 15 |  | sumeq1 |  | 
						
							| 16 | 15 | mpteq2dv |  | 
						
							| 17 | 16 | eleq1d |  | 
						
							| 18 | 14 17 | imbi12d |  | 
						
							| 19 | 18 | imbi2d |  | 
						
							| 20 |  | sseq1 |  | 
						
							| 21 |  | sumeq1 |  | 
						
							| 22 | 21 | mpteq2dv |  | 
						
							| 23 | 22 | eleq1d |  | 
						
							| 24 | 20 23 | imbi12d |  | 
						
							| 25 | 24 | imbi2d |  | 
						
							| 26 |  | sseq1 |  | 
						
							| 27 |  | sumeq1 |  | 
						
							| 28 | 27 | mpteq2dv |  | 
						
							| 29 | 28 | eleq1d |  | 
						
							| 30 | 26 29 | imbi12d |  | 
						
							| 31 | 30 | imbi2d |  | 
						
							| 32 |  | 0cn |  | 
						
							| 33 |  | o1const |  | 
						
							| 34 | 1 32 33 | sylancl |  | 
						
							| 35 | 34 | a1d |  | 
						
							| 36 |  | ssun1 |  | 
						
							| 37 |  | sstr |  | 
						
							| 38 | 36 37 | mpan |  | 
						
							| 39 | 38 | imim1i |  | 
						
							| 40 |  | simprl |  | 
						
							| 41 |  | disjsn |  | 
						
							| 42 | 40 41 | sylibr |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 |  | eqidd |  | 
						
							| 45 | 2 | adantr |  | 
						
							| 46 |  | simprr |  | 
						
							| 47 | 45 46 | ssfid |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 46 | sselda |  | 
						
							| 50 | 49 | adantlr |  | 
						
							| 51 | 3 | anass1rs |  | 
						
							| 52 | 51 4 | o1mptrcl |  | 
						
							| 53 | 52 | an32s |  | 
						
							| 54 | 53 | adantllr |  | 
						
							| 55 | 50 54 | syldan |  | 
						
							| 56 | 43 44 48 55 | fsumsplit |  | 
						
							| 57 |  | csbeq1a |  | 
						
							| 58 |  | nfcv |  | 
						
							| 59 |  | nfcsb1v |  | 
						
							| 60 | 57 58 59 | cbvsum |  | 
						
							| 61 | 46 | unssbd |  | 
						
							| 62 |  | vex |  | 
						
							| 63 | 62 | snss |  | 
						
							| 64 | 61 63 | sylibr |  | 
						
							| 65 | 64 | adantr |  | 
						
							| 66 | 54 | ralrimiva |  | 
						
							| 67 |  | nfcsb1v |  | 
						
							| 68 | 67 | nfel1 |  | 
						
							| 69 |  | csbeq1a |  | 
						
							| 70 | 69 | eleq1d |  | 
						
							| 71 | 68 70 | rspc |  | 
						
							| 72 | 65 66 71 | sylc |  | 
						
							| 73 |  | csbeq1 |  | 
						
							| 74 | 73 | sumsn |  | 
						
							| 75 | 65 72 74 | syl2anc |  | 
						
							| 76 | 60 75 | eqtrid |  | 
						
							| 77 | 76 | oveq2d |  | 
						
							| 78 | 56 77 | eqtrd |  | 
						
							| 79 | 78 | mpteq2dva |  | 
						
							| 80 | 1 | adantr |  | 
						
							| 81 |  | reex |  | 
						
							| 82 | 81 | ssex |  | 
						
							| 83 | 80 82 | syl |  | 
						
							| 84 |  | sumex |  | 
						
							| 85 | 84 | a1i |  | 
						
							| 86 |  | eqidd |  | 
						
							| 87 |  | eqidd |  | 
						
							| 88 | 83 85 72 86 87 | offval2 |  | 
						
							| 89 | 79 88 | eqtr4d |  | 
						
							| 90 | 89 | adantr |  | 
						
							| 91 |  | id |  | 
						
							| 92 | 4 | ralrimiva |  | 
						
							| 93 | 92 | adantr |  | 
						
							| 94 |  | nfcv |  | 
						
							| 95 | 94 67 | nfmpt |  | 
						
							| 96 | 95 | nfel1 |  | 
						
							| 97 | 69 | mpteq2dv |  | 
						
							| 98 | 97 | eleq1d |  | 
						
							| 99 | 96 98 | rspc |  | 
						
							| 100 | 64 93 99 | sylc |  | 
						
							| 101 |  | o1add |  | 
						
							| 102 | 91 100 101 | syl2anr |  | 
						
							| 103 | 90 102 | eqeltrd |  | 
						
							| 104 | 103 | ex |  | 
						
							| 105 | 104 | expr |  | 
						
							| 106 | 105 | a2d |  | 
						
							| 107 | 39 106 | syl5 |  | 
						
							| 108 | 107 | expcom |  | 
						
							| 109 | 108 | a2d |  | 
						
							| 110 | 109 | adantl |  | 
						
							| 111 | 13 19 25 31 35 110 | findcard2s |  | 
						
							| 112 | 2 111 | mpcom |  | 
						
							| 113 | 5 112 | mpi |  |