Metamath Proof Explorer


Theorem fsump1

Description: The addition of the next term in a finite sum of A ( k ) is the current term plus B i.e. A ( N + 1 ) . (Contributed by NM, 4-Nov-2005) (Revised by Mario Carneiro, 21-Apr-2014)

Ref Expression
Hypotheses fsump1.1 φ N M
fsump1.2 φ k M N + 1 A
fsump1.3 k = N + 1 A = B
Assertion fsump1 φ k = M N + 1 A = k = M N A + B

Proof

Step Hyp Ref Expression
1 fsump1.1 φ N M
2 fsump1.2 φ k M N + 1 A
3 fsump1.3 k = N + 1 A = B
4 peano2uz N M N + 1 M
5 1 4 syl φ N + 1 M
6 5 2 3 fsumm1 φ k = M N + 1 A = k = M N + 1 - 1 A + B
7 eluzelz N M N
8 1 7 syl φ N
9 8 zcnd φ N
10 ax-1cn 1
11 pncan N 1 N + 1 - 1 = N
12 9 10 11 sylancl φ N + 1 - 1 = N
13 12 oveq2d φ M N + 1 - 1 = M N
14 13 sumeq1d φ k = M N + 1 - 1 A = k = M N A
15 14 oveq1d φ k = M N + 1 - 1 A + B = k = M N A + B
16 6 15 eqtrd φ k = M N + 1 A = k = M N A + B