| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsump1i.1 |
|
| 2 |
|
fsump1i.2 |
|
| 3 |
|
fsump1i.3 |
|
| 4 |
|
fsump1i.4 |
|
| 5 |
|
fsump1i.5 |
|
| 6 |
|
fsump1i.6 |
|
| 7 |
5
|
simpld |
|
| 8 |
7 1
|
eleqtrdi |
|
| 9 |
|
peano2uz |
|
| 10 |
9 1
|
eleqtrrdi |
|
| 11 |
8 10
|
syl |
|
| 12 |
2 11
|
eqeltrid |
|
| 13 |
2
|
oveq2i |
|
| 14 |
13
|
sumeq1i |
|
| 15 |
|
elfzuz |
|
| 16 |
15 1
|
eleqtrrdi |
|
| 17 |
16 4
|
sylan2 |
|
| 18 |
2
|
eqeq2i |
|
| 19 |
18 3
|
sylbir |
|
| 20 |
8 17 19
|
fsump1 |
|
| 21 |
14 20
|
eqtrid |
|
| 22 |
5
|
simprd |
|
| 23 |
22
|
oveq1d |
|
| 24 |
21 23 6
|
3eqtrd |
|
| 25 |
12 24
|
jca |
|