Metamath Proof Explorer


Theorem fsump1i

Description: Optimized version of fsump1 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fsump1i.1 Z = M
fsump1i.2 N = K + 1
fsump1i.3 k = N A = B
fsump1i.4 φ k Z A
fsump1i.5 φ K Z k = M K A = S
fsump1i.6 φ S + B = T
Assertion fsump1i φ N Z k = M N A = T

Proof

Step Hyp Ref Expression
1 fsump1i.1 Z = M
2 fsump1i.2 N = K + 1
3 fsump1i.3 k = N A = B
4 fsump1i.4 φ k Z A
5 fsump1i.5 φ K Z k = M K A = S
6 fsump1i.6 φ S + B = T
7 5 simpld φ K Z
8 7 1 eleqtrdi φ K M
9 peano2uz K M K + 1 M
10 9 1 eleqtrrdi K M K + 1 Z
11 8 10 syl φ K + 1 Z
12 2 11 eqeltrid φ N Z
13 2 oveq2i M N = M K + 1
14 13 sumeq1i k = M N A = k = M K + 1 A
15 elfzuz k M K + 1 k M
16 15 1 eleqtrrdi k M K + 1 k Z
17 16 4 sylan2 φ k M K + 1 A
18 2 eqeq2i k = N k = K + 1
19 18 3 sylbir k = K + 1 A = B
20 8 17 19 fsump1 φ k = M K + 1 A = k = M K A + B
21 14 20 eqtrid φ k = M N A = k = M K A + B
22 5 simprd φ k = M K A = S
23 22 oveq1d φ k = M K A + B = S + B
24 21 23 6 3eqtrd φ k = M N A = T
25 12 24 jca φ N Z k = M N A = T