Step |
Hyp |
Ref |
Expression |
1 |
|
fsumparts.b |
|
2 |
|
fsumparts.c |
|
3 |
|
fsumparts.d |
|
4 |
|
fsumparts.e |
|
5 |
|
fsumparts.1 |
|
6 |
|
fsumparts.2 |
|
7 |
|
fsumparts.3 |
|
8 |
|
sum0 |
|
9 |
|
0m0e0 |
|
10 |
8 9
|
eqtr4i |
|
11 |
|
simpr |
|
12 |
11
|
oveq2d |
|
13 |
|
fzo0 |
|
14 |
12 13
|
eqtrdi |
|
15 |
14
|
sumeq1d |
|
16 |
|
eluzfz1 |
|
17 |
5 16
|
syl |
|
18 |
|
eqtr3 |
|
19 |
|
oveq12 |
|
20 |
18 4 19
|
3syl |
|
21 |
|
oveq12 |
|
22 |
3 21
|
syl |
|
23 |
22
|
adantr |
|
24 |
20 23
|
eqeq12d |
|
25 |
24
|
pm5.74da |
|
26 |
|
eqidd |
|
27 |
25 26
|
vtoclg |
|
28 |
27
|
imp |
|
29 |
17 28
|
sylan |
|
30 |
29
|
oveq1d |
|
31 |
3
|
simpld |
|
32 |
31
|
eleq1d |
|
33 |
6
|
ralrimiva |
|
34 |
32 33 17
|
rspcdva |
|
35 |
3
|
simprd |
|
36 |
35
|
eleq1d |
|
37 |
7
|
ralrimiva |
|
38 |
36 37 17
|
rspcdva |
|
39 |
34 38
|
mulcld |
|
40 |
39
|
subidd |
|
41 |
40
|
adantr |
|
42 |
30 41
|
eqtrd |
|
43 |
14
|
sumeq1d |
|
44 |
|
sum0 |
|
45 |
43 44
|
eqtrdi |
|
46 |
42 45
|
oveq12d |
|
47 |
10 15 46
|
3eqtr4a |
|
48 |
|
fzofi |
|
49 |
48
|
a1i |
|
50 |
|
eluzel2 |
|
51 |
5 50
|
syl |
|
52 |
51
|
adantr |
|
53 |
|
uzid |
|
54 |
|
peano2uz |
|
55 |
|
fzoss1 |
|
56 |
52 53 54 55
|
4syl |
|
57 |
56
|
sselda |
|
58 |
|
elfzofz |
|
59 |
6 7
|
mulcld |
|
60 |
58 59
|
sylan2 |
|
61 |
60
|
adantlr |
|
62 |
57 61
|
syldan |
|
63 |
49 62
|
fsumcl |
|
64 |
4
|
simpld |
|
65 |
64
|
eleq1d |
|
66 |
|
eluzfz2 |
|
67 |
5 66
|
syl |
|
68 |
65 33 67
|
rspcdva |
|
69 |
4
|
simprd |
|
70 |
69
|
eleq1d |
|
71 |
70 37 67
|
rspcdva |
|
72 |
68 71
|
mulcld |
|
73 |
72
|
adantr |
|
74 |
|
simpr |
|
75 |
|
fzp1ss |
|
76 |
52 75
|
syl |
|
77 |
76
|
sselda |
|
78 |
59
|
adantlr |
|
79 |
77 78
|
syldan |
|
80 |
4 19
|
syl |
|
81 |
74 79 80
|
fsumm1 |
|
82 |
|
eluzelz |
|
83 |
5 82
|
syl |
|
84 |
83
|
adantr |
|
85 |
|
fzoval |
|
86 |
84 85
|
syl |
|
87 |
52
|
zcnd |
|
88 |
|
ax-1cn |
|
89 |
|
pncan |
|
90 |
87 88 89
|
sylancl |
|
91 |
90
|
oveq1d |
|
92 |
86 91
|
eqtr4d |
|
93 |
92
|
sumeq1d |
|
94 |
|
1zzd |
|
95 |
52
|
peano2zd |
|
96 |
|
oveq12 |
|
97 |
2 96
|
syl |
|
98 |
94 95 84 79 97
|
fsumshftm |
|
99 |
93 98
|
eqtr4d |
|
100 |
|
fzoval |
|
101 |
84 100
|
syl |
|
102 |
101
|
sumeq1d |
|
103 |
102
|
oveq1d |
|
104 |
81 99 103
|
3eqtr4d |
|
105 |
63 73 104
|
comraddd |
|
106 |
105
|
oveq1d |
|
107 |
|
fzofzp1 |
|
108 |
2
|
simpld |
|
109 |
108
|
eleq1d |
|
110 |
109
|
rspccva |
|
111 |
33 107 110
|
syl2an |
|
112 |
|
elfzofz |
|
113 |
1
|
simpld |
|
114 |
113
|
eleq1d |
|
115 |
114
|
rspccva |
|
116 |
33 112 115
|
syl2an |
|
117 |
2
|
simprd |
|
118 |
117
|
eleq1d |
|
119 |
118
|
rspccva |
|
120 |
37 107 119
|
syl2an |
|
121 |
111 116 120
|
subdird |
|
122 |
121
|
sumeq2dv |
|
123 |
|
fzofi |
|
124 |
123
|
a1i |
|
125 |
111 120
|
mulcld |
|
126 |
116 120
|
mulcld |
|
127 |
124 125 126
|
fsumsub |
|
128 |
122 127
|
eqtrd |
|
129 |
128
|
adantr |
|
130 |
124 126
|
fsumcl |
|
131 |
130
|
adantr |
|
132 |
73 131 63
|
subsub3d |
|
133 |
106 129 132
|
3eqtr4d |
|
134 |
133
|
oveq2d |
|
135 |
39
|
adantr |
|
136 |
131 63
|
subcld |
|
137 |
73 135 136
|
nnncan1d |
|
138 |
63 135
|
addcomd |
|
139 |
|
eluzp1m1 |
|
140 |
51 139
|
sylan |
|
141 |
86
|
eleq2d |
|
142 |
141
|
biimpar |
|
143 |
142 61
|
syldan |
|
144 |
140 143 22
|
fsum1p |
|
145 |
86
|
sumeq1d |
|
146 |
102
|
oveq2d |
|
147 |
144 145 146
|
3eqtr4d |
|
148 |
138 147
|
eqtr4d |
|
149 |
|
oveq12 |
|
150 |
1 149
|
syl |
|
151 |
150
|
cbvsumv |
|
152 |
148 151
|
eqtrdi |
|
153 |
152
|
oveq2d |
|
154 |
131 63 135
|
subsub4d |
|
155 |
1
|
simprd |
|
156 |
155
|
eleq1d |
|
157 |
156
|
rspccva |
|
158 |
37 112 157
|
syl2an |
|
159 |
116 120 158
|
subdid |
|
160 |
159
|
sumeq2dv |
|
161 |
116 158
|
mulcld |
|
162 |
124 126 161
|
fsumsub |
|
163 |
160 162
|
eqtrd |
|
164 |
163
|
adantr |
|
165 |
153 154 164
|
3eqtr4d |
|
166 |
134 137 165
|
3eqtrrd |
|
167 |
|
uzp1 |
|
168 |
5 167
|
syl |
|
169 |
47 166 168
|
mpjaodan |
|