Metamath Proof Explorer


Theorem fsumreclf

Description: Closure of a finite sum of reals. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses fsumreclf.k k φ
fsumreclf.a φ A Fin
fsumreclf.b φ k A B
Assertion fsumreclf φ k A B

Proof

Step Hyp Ref Expression
1 fsumreclf.k k φ
2 fsumreclf.a φ A Fin
3 fsumreclf.b φ k A B
4 csbeq1a k = j B = j / k B
5 nfcv _ j B
6 nfcsb1v _ k j / k B
7 4 5 6 cbvsum k A B = j A j / k B
8 7 a1i φ k A B = j A j / k B
9 nfv k j A
10 1 9 nfan k φ j A
11 6 nfel1 k j / k B
12 10 11 nfim k φ j A j / k B
13 eleq1w k = j k A j A
14 13 anbi2d k = j φ k A φ j A
15 4 eleq1d k = j B j / k B
16 14 15 imbi12d k = j φ k A B φ j A j / k B
17 12 16 3 chvarfv φ j A j / k B
18 2 17 fsumrecl φ j A j / k B
19 8 18 eqeltrd φ k A B