Step |
Hyp |
Ref |
Expression |
1 |
|
fsumre.1 |
|
2 |
|
fsumre.2 |
|
3 |
|
fsumrelem.3 |
|
4 |
|
fsumrelem.4 |
|
5 |
|
0cn |
|
6 |
3
|
ffvelrni |
|
7 |
5 6
|
ax-mp |
|
8 |
7
|
addid1i |
|
9 |
|
fvoveq1 |
|
10 |
|
fveq2 |
|
11 |
10
|
oveq1d |
|
12 |
9 11
|
eqeq12d |
|
13 |
|
oveq2 |
|
14 |
|
00id |
|
15 |
13 14
|
eqtrdi |
|
16 |
15
|
fveq2d |
|
17 |
|
fveq2 |
|
18 |
17
|
oveq2d |
|
19 |
16 18
|
eqeq12d |
|
20 |
12 19 4
|
vtocl2ga |
|
21 |
5 5 20
|
mp2an |
|
22 |
8 21
|
eqtr2i |
|
23 |
7 7 5
|
addcani |
|
24 |
22 23
|
mpbi |
|
25 |
|
sumeq1 |
|
26 |
|
sum0 |
|
27 |
25 26
|
eqtrdi |
|
28 |
27
|
fveq2d |
|
29 |
|
sumeq1 |
|
30 |
|
sum0 |
|
31 |
29 30
|
eqtrdi |
|
32 |
24 28 31
|
3eqtr4a |
|
33 |
32
|
a1i |
|
34 |
|
addcl |
|
35 |
34
|
adantl |
|
36 |
2
|
fmpttd |
|
37 |
36
|
adantr |
|
38 |
|
simprr |
|
39 |
|
f1of |
|
40 |
38 39
|
syl |
|
41 |
|
fco |
|
42 |
37 40 41
|
syl2anc |
|
43 |
42
|
ffvelrnda |
|
44 |
|
simprl |
|
45 |
|
nnuz |
|
46 |
44 45
|
eleqtrdi |
|
47 |
4
|
adantl |
|
48 |
40
|
ffvelrnda |
|
49 |
|
simpr |
|
50 |
|
eqid |
|
51 |
50
|
fvmpt2 |
|
52 |
49 2 51
|
syl2anc |
|
53 |
52
|
fveq2d |
|
54 |
|
fvex |
|
55 |
|
eqid |
|
56 |
55
|
fvmpt2 |
|
57 |
49 54 56
|
sylancl |
|
58 |
53 57
|
eqtr4d |
|
59 |
58
|
ralrimiva |
|
60 |
59
|
ad2antrr |
|
61 |
|
nfcv |
|
62 |
|
nffvmpt1 |
|
63 |
61 62
|
nffv |
|
64 |
|
nffvmpt1 |
|
65 |
63 64
|
nfeq |
|
66 |
|
2fveq3 |
|
67 |
|
fveq2 |
|
68 |
66 67
|
eqeq12d |
|
69 |
65 68
|
rspc |
|
70 |
48 60 69
|
sylc |
|
71 |
|
fvco3 |
|
72 |
40 71
|
sylan |
|
73 |
72
|
fveq2d |
|
74 |
|
fvco3 |
|
75 |
40 74
|
sylan |
|
76 |
70 73 75
|
3eqtr4d |
|
77 |
35 43 46 47 76
|
seqhomo |
|
78 |
|
fveq2 |
|
79 |
37
|
ffvelrnda |
|
80 |
78 44 38 79 72
|
fsum |
|
81 |
80
|
fveq2d |
|
82 |
|
fveq2 |
|
83 |
3
|
ffvelrni |
|
84 |
2 83
|
syl |
|
85 |
84
|
fmpttd |
|
86 |
85
|
adantr |
|
87 |
86
|
ffvelrnda |
|
88 |
82 44 38 87 75
|
fsum |
|
89 |
77 81 88
|
3eqtr4d |
|
90 |
|
sumfc |
|
91 |
90
|
fveq2i |
|
92 |
|
sumfc |
|
93 |
89 91 92
|
3eqtr3g |
|
94 |
93
|
expr |
|
95 |
94
|
exlimdv |
|
96 |
95
|
expimpd |
|
97 |
|
fz1f1o |
|
98 |
1 97
|
syl |
|
99 |
33 96 98
|
mpjaod |
|