Step |
Hyp |
Ref |
Expression |
1 |
|
fsumrev.1 |
|
2 |
|
fsumrev.2 |
|
3 |
|
fsumrev.3 |
|
4 |
|
fsumrev.4 |
|
5 |
|
fsumrev.5 |
|
6 |
|
fzfid |
|
7 |
|
eqid |
|
8 |
|
ovexd |
|
9 |
|
ovexd |
|
10 |
|
simprr |
|
11 |
|
simprl |
|
12 |
2
|
adantr |
|
13 |
3
|
adantr |
|
14 |
1
|
adantr |
|
15 |
11
|
elfzelzd |
|
16 |
|
fzrev |
|
17 |
12 13 14 15 16
|
syl22anc |
|
18 |
11 17
|
mpbid |
|
19 |
10 18
|
eqeltrd |
|
20 |
10
|
oveq2d |
|
21 |
|
zcn |
|
22 |
|
zcn |
|
23 |
|
nncan |
|
24 |
21 22 23
|
syl2an |
|
25 |
1 15 24
|
syl2an2r |
|
26 |
20 25
|
eqtr2d |
|
27 |
19 26
|
jca |
|
28 |
|
simprr |
|
29 |
|
simprl |
|
30 |
2
|
adantr |
|
31 |
3
|
adantr |
|
32 |
1
|
adantr |
|
33 |
29
|
elfzelzd |
|
34 |
|
fzrev2 |
|
35 |
30 31 32 33 34
|
syl22anc |
|
36 |
29 35
|
mpbid |
|
37 |
28 36
|
eqeltrd |
|
38 |
28
|
oveq2d |
|
39 |
|
zcn |
|
40 |
|
nncan |
|
41 |
21 39 40
|
syl2an |
|
42 |
1 33 41
|
syl2an2r |
|
43 |
38 42
|
eqtr2d |
|
44 |
37 43
|
jca |
|
45 |
27 44
|
impbida |
|
46 |
7 8 9 45
|
f1od |
|
47 |
|
oveq2 |
|
48 |
|
ovex |
|
49 |
47 7 48
|
fvmpt |
|
50 |
49
|
adantl |
|
51 |
5 6 46 50 4
|
fsumf1o |
|