Metamath Proof Explorer


Theorem fsumrev

Description: Reversal of a finite sum. (Contributed by NM, 26-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumrev.1 φ K
fsumrev.2 φ M
fsumrev.3 φ N
fsumrev.4 φ j M N A
fsumrev.5 j = K k A = B
Assertion fsumrev φ j = M N A = k = K N K M B

Proof

Step Hyp Ref Expression
1 fsumrev.1 φ K
2 fsumrev.2 φ M
3 fsumrev.3 φ N
4 fsumrev.4 φ j M N A
5 fsumrev.5 j = K k A = B
6 fzfid φ K N K M Fin
7 eqid j K N K M K j = j K N K M K j
8 ovexd φ j K N K M K j V
9 ovexd φ k M N K k V
10 simprr φ j K N K M k = K j k = K j
11 simprl φ j K N K M k = K j j K N K M
12 2 adantr φ j K N K M k = K j M
13 3 adantr φ j K N K M k = K j N
14 1 adantr φ j K N K M k = K j K
15 11 elfzelzd φ j K N K M k = K j j
16 fzrev M N K j j K N K M K j M N
17 12 13 14 15 16 syl22anc φ j K N K M k = K j j K N K M K j M N
18 11 17 mpbid φ j K N K M k = K j K j M N
19 10 18 eqeltrd φ j K N K M k = K j k M N
20 10 oveq2d φ j K N K M k = K j K k = K K j
21 zcn K K
22 zcn j j
23 nncan K j K K j = j
24 21 22 23 syl2an K j K K j = j
25 1 15 24 syl2an2r φ j K N K M k = K j K K j = j
26 20 25 eqtr2d φ j K N K M k = K j j = K k
27 19 26 jca φ j K N K M k = K j k M N j = K k
28 simprr φ k M N j = K k j = K k
29 simprl φ k M N j = K k k M N
30 2 adantr φ k M N j = K k M
31 3 adantr φ k M N j = K k N
32 1 adantr φ k M N j = K k K
33 29 elfzelzd φ k M N j = K k k
34 fzrev2 M N K k k M N K k K N K M
35 30 31 32 33 34 syl22anc φ k M N j = K k k M N K k K N K M
36 29 35 mpbid φ k M N j = K k K k K N K M
37 28 36 eqeltrd φ k M N j = K k j K N K M
38 28 oveq2d φ k M N j = K k K j = K K k
39 zcn k k
40 nncan K k K K k = k
41 21 39 40 syl2an K k K K k = k
42 1 33 41 syl2an2r φ k M N j = K k K K k = k
43 38 42 eqtr2d φ k M N j = K k k = K j
44 37 43 jca φ k M N j = K k j K N K M k = K j
45 27 44 impbida φ j K N K M k = K j k M N j = K k
46 7 8 9 45 f1od φ j K N K M K j : K N K M 1-1 onto M N
47 oveq2 j = k K j = K k
48 ovex K k V
49 47 7 48 fvmpt k K N K M j K N K M K j k = K k
50 49 adantl φ k K N K M j K N K M K j k = K k
51 5 6 46 50 4 fsumf1o φ j = M N A = k = K N K M B