Step |
Hyp |
Ref |
Expression |
1 |
|
fsumrlim.1 |
|
2 |
|
fsumrlim.2 |
|
3 |
|
fsumrlim.3 |
|
4 |
|
fsumrlim.4 |
|
5 |
|
ssid |
|
6 |
|
sseq1 |
|
7 |
|
sumeq1 |
|
8 |
|
sum0 |
|
9 |
7 8
|
eqtrdi |
|
10 |
9
|
mpteq2dv |
|
11 |
|
sumeq1 |
|
12 |
|
sum0 |
|
13 |
11 12
|
eqtrdi |
|
14 |
10 13
|
breq12d |
|
15 |
6 14
|
imbi12d |
|
16 |
15
|
imbi2d |
|
17 |
|
sseq1 |
|
18 |
|
sumeq1 |
|
19 |
18
|
mpteq2dv |
|
20 |
|
sumeq1 |
|
21 |
19 20
|
breq12d |
|
22 |
17 21
|
imbi12d |
|
23 |
22
|
imbi2d |
|
24 |
|
sseq1 |
|
25 |
|
sumeq1 |
|
26 |
25
|
mpteq2dv |
|
27 |
|
sumeq1 |
|
28 |
26 27
|
breq12d |
|
29 |
24 28
|
imbi12d |
|
30 |
29
|
imbi2d |
|
31 |
|
sseq1 |
|
32 |
|
sumeq1 |
|
33 |
32
|
mpteq2dv |
|
34 |
|
sumeq1 |
|
35 |
33 34
|
breq12d |
|
36 |
31 35
|
imbi12d |
|
37 |
36
|
imbi2d |
|
38 |
|
0cn |
|
39 |
|
rlimconst |
|
40 |
1 38 39
|
sylancl |
|
41 |
40
|
a1d |
|
42 |
|
ssun1 |
|
43 |
|
sstr |
|
44 |
42 43
|
mpan |
|
45 |
44
|
imim1i |
|
46 |
|
sumex |
|
47 |
46
|
a1i |
|
48 |
|
simprr |
|
49 |
48
|
unssbd |
|
50 |
|
vex |
|
51 |
50
|
snss |
|
52 |
49 51
|
sylibr |
|
53 |
52
|
adantr |
|
54 |
3
|
anass1rs |
|
55 |
54 4
|
rlimmptrcl |
|
56 |
55
|
an32s |
|
57 |
56
|
adantllr |
|
58 |
57
|
ralrimiva |
|
59 |
|
nfcsb1v |
|
60 |
59
|
nfel1 |
|
61 |
|
csbeq1a |
|
62 |
61
|
eleq1d |
|
63 |
60 62
|
rspc |
|
64 |
53 58 63
|
sylc |
|
65 |
64
|
ralrimiva |
|
66 |
65
|
adantr |
|
67 |
|
nfcsb1v |
|
68 |
67
|
nfel1 |
|
69 |
|
csbeq1a |
|
70 |
69
|
eleq1d |
|
71 |
68 70
|
rspc |
|
72 |
66 71
|
mpan9 |
|
73 |
72
|
elexd |
|
74 |
|
nfcv |
|
75 |
|
nfcv |
|
76 |
|
nfcsb1v |
|
77 |
75 76
|
nfsum |
|
78 |
|
csbeq1a |
|
79 |
78
|
sumeq2sdv |
|
80 |
74 77 79
|
cbvmpt |
|
81 |
|
simpr |
|
82 |
80 81
|
eqbrtrrid |
|
83 |
|
nfcv |
|
84 |
83 67 69
|
cbvmpt |
|
85 |
4
|
ralrimiva |
|
86 |
85
|
adantr |
|
87 |
|
nfcv |
|
88 |
87 59
|
nfmpt |
|
89 |
|
nfcv |
|
90 |
|
nfcsb1v |
|
91 |
88 89 90
|
nfbr |
|
92 |
61
|
mpteq2dv |
|
93 |
|
csbeq1a |
|
94 |
92 93
|
breq12d |
|
95 |
91 94
|
rspc |
|
96 |
52 86 95
|
sylc |
|
97 |
96
|
adantr |
|
98 |
84 97
|
eqbrtrrid |
|
99 |
47 73 82 98
|
rlimadd |
|
100 |
|
simprl |
|
101 |
|
disjsn |
|
102 |
100 101
|
sylibr |
|
103 |
102
|
adantr |
|
104 |
|
eqidd |
|
105 |
2
|
adantr |
|
106 |
105 48
|
ssfid |
|
107 |
106
|
adantr |
|
108 |
48
|
sselda |
|
109 |
108
|
adantlr |
|
110 |
109 57
|
syldan |
|
111 |
103 104 107 110
|
fsumsplit |
|
112 |
|
nfcv |
|
113 |
|
nfcsb1v |
|
114 |
|
csbeq1a |
|
115 |
112 113 114
|
cbvsumi |
|
116 |
|
csbeq1 |
|
117 |
116
|
sumsn |
|
118 |
53 64 117
|
syl2anc |
|
119 |
115 118
|
eqtrid |
|
120 |
119
|
oveq2d |
|
121 |
111 120
|
eqtrd |
|
122 |
121
|
mpteq2dva |
|
123 |
122
|
adantr |
|
124 |
|
nfcv |
|
125 |
|
nfcv |
|
126 |
77 125 67
|
nfov |
|
127 |
79 69
|
oveq12d |
|
128 |
124 126 127
|
cbvmpt |
|
129 |
123 128
|
eqtrdi |
|
130 |
|
eqidd |
|
131 |
|
rlimcl |
|
132 |
4 131
|
syl |
|
133 |
132
|
adantlr |
|
134 |
108 133
|
syldan |
|
135 |
102 130 106 134
|
fsumsplit |
|
136 |
|
nfcv |
|
137 |
|
nfcsb1v |
|
138 |
|
csbeq1a |
|
139 |
136 137 138
|
cbvsumi |
|
140 |
133
|
ralrimiva |
|
141 |
90
|
nfel1 |
|
142 |
93
|
eleq1d |
|
143 |
141 142
|
rspc |
|
144 |
52 140 143
|
sylc |
|
145 |
|
csbeq1 |
|
146 |
145
|
sumsn |
|
147 |
52 144 146
|
syl2anc |
|
148 |
139 147
|
eqtrid |
|
149 |
148
|
oveq2d |
|
150 |
135 149
|
eqtrd |
|
151 |
150
|
adantr |
|
152 |
99 129 151
|
3brtr4d |
|
153 |
152
|
ex |
|
154 |
153
|
expr |
|
155 |
154
|
a2d |
|
156 |
45 155
|
syl5 |
|
157 |
156
|
expcom |
|
158 |
157
|
a2d |
|
159 |
158
|
adantl |
|
160 |
16 23 30 37 41 159
|
findcard2s |
|
161 |
2 160
|
mpcom |
|
162 |
5 161
|
mpi |
|