Metamath Proof Explorer


Theorem fsumrpcl

Description: Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014)

Ref Expression
Hypotheses fsumcl.1 φ A Fin
fsumrpcl.2 φ A
fsumrpcl.3 φ k A B +
Assertion fsumrpcl φ k A B +

Proof

Step Hyp Ref Expression
1 fsumcl.1 φ A Fin
2 fsumrpcl.2 φ A
3 fsumrpcl.3 φ k A B +
4 rpssre +
5 ax-resscn
6 4 5 sstri +
7 6 a1i φ +
8 rpaddcl x + y + x + y +
9 8 adantl φ x + y + x + y +
10 7 9 1 3 2 fsumcl2lem φ k A B +