Step |
Hyp |
Ref |
Expression |
1 |
|
fsumsermpt.m |
|
2 |
|
fsumsermpt.z |
|
3 |
|
fsumsermpt.a |
|
4 |
|
fsumsermpt.f |
|
5 |
|
fsumsermpt.g |
|
6 |
|
fzfid |
|
7 |
|
simpl |
|
8 |
|
elfzuz |
|
9 |
8 2
|
eleqtrrdi |
|
10 |
9
|
adantl |
|
11 |
7 10 3
|
syl2anc |
|
12 |
6 11
|
fsumcl |
|
13 |
12
|
adantr |
|
14 |
13
|
ralrimiva |
|
15 |
|
oveq2 |
|
16 |
15
|
sumeq1d |
|
17 |
16
|
cbvmptv |
|
18 |
4 17
|
eqtri |
|
19 |
18
|
fnmpt |
|
20 |
14 19
|
syl |
|
21 |
|
simpr |
|
22 |
|
nfv |
|
23 |
|
nfcv |
|
24 |
23
|
nfcsb1 |
|
25 |
24
|
nfel1 |
|
26 |
22 25
|
nfim |
|
27 |
|
eleq1w |
|
28 |
27
|
anbi2d |
|
29 |
|
csbeq1a |
|
30 |
29
|
eleq1d |
|
31 |
28 30
|
imbi12d |
|
32 |
26 31 3
|
chvarfv |
|
33 |
|
eqid |
|
34 |
23 24 29 33
|
fvmptf |
|
35 |
21 32 34
|
syl2anc |
|
36 |
35 32
|
eqeltrd |
|
37 |
|
addcl |
|
38 |
37
|
adantl |
|
39 |
2 1 36 38
|
seqf |
|
40 |
39
|
ffnd |
|
41 |
5
|
a1i |
|
42 |
41
|
fneq1d |
|
43 |
40 42
|
mpbird |
|
44 |
|
simpr |
|
45 |
18
|
fvmpt2 |
|
46 |
44 13 45
|
syl2anc |
|
47 |
|
nfcv |
|
48 |
|
nfcv |
|
49 |
|
nfcv |
|
50 |
29 47 48 49 24
|
cbvsum |
|
51 |
50
|
a1i |
|
52 |
46 51
|
eqtrd |
|
53 |
|
simpl |
|
54 |
|
elfzuz |
|
55 |
54 2
|
eleqtrrdi |
|
56 |
55
|
adantl |
|
57 |
53 56 35
|
syl2anc |
|
58 |
57
|
adantlr |
|
59 |
|
id |
|
60 |
59 2
|
eleqtrdi |
|
61 |
60
|
adantl |
|
62 |
53 56 32
|
syl2anc |
|
63 |
62
|
adantlr |
|
64 |
58 61 63
|
fsumser |
|
65 |
5
|
fveq1i |
|
66 |
65
|
eqcomi |
|
67 |
66
|
a1i |
|
68 |
52 64 67
|
3eqtrd |
|
69 |
20 43 68
|
eqfnfvd |
|