Metamath Proof Explorer


Theorem fsumsers

Description: Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013) (Revised by Mario Carneiro, 21-Apr-2014)

Ref Expression
Hypotheses fsumsers.1 φ k M F k = if k A B 0
fsumsers.2 φ N M
fsumsers.3 φ k A B
fsumsers.4 φ A M N
Assertion fsumsers φ k A B = seq M + F N

Proof

Step Hyp Ref Expression
1 fsumsers.1 φ k M F k = if k A B 0
2 fsumsers.2 φ N M
3 fsumsers.3 φ k A B
4 fsumsers.4 φ A M N
5 eqid M = M
6 eluzel2 N M M
7 2 6 syl φ M
8 fzssuz M N M
9 4 8 sstrdi φ A M
10 5 7 9 1 3 zsum φ k A B = seq M + F
11 fclim : dom
12 ffun : dom Fun
13 11 12 ax-mp Fun
14 1 2 3 4 fsumcvg2 φ seq M + F seq M + F N
15 funbrfv Fun seq M + F seq M + F N seq M + F = seq M + F N
16 13 14 15 mpsyl φ seq M + F = seq M + F N
17 10 16 eqtrd φ k A B = seq M + F N