Metamath Proof Explorer


Theorem fsumshft

Description: Index shift of a finite sum. (Contributed by NM, 27-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014) (Proof shortened by AV, 8-Sep-2019)

Ref Expression
Hypotheses fsumrev.1 φ K
fsumrev.2 φ M
fsumrev.3 φ N
fsumrev.4 φ j M N A
fsumshft.5 j = k K A = B
Assertion fsumshft φ j = M N A = k = M + K N + K B

Proof

Step Hyp Ref Expression
1 fsumrev.1 φ K
2 fsumrev.2 φ M
3 fsumrev.3 φ N
4 fsumrev.4 φ j M N A
5 fsumshft.5 j = k K A = B
6 fzfid φ M + K N + K Fin
7 1 2 3 mptfzshft φ j M + K N + K j K : M + K N + K 1-1 onto M N
8 oveq1 j = k j K = k K
9 eqid j M + K N + K j K = j M + K N + K j K
10 ovex k K V
11 8 9 10 fvmpt k M + K N + K j M + K N + K j K k = k K
12 11 adantl φ k M + K N + K j M + K N + K j K k = k K
13 5 6 7 12 4 fsumf1o φ j = M N A = k = M + K N + K B